
Power Modelling and Analysis on
Heterogeneous Embedded Systems

A Systematic Approach

By

KRIS NIKOV

Department of Electrical and Electronic Engineering
UNIVERSITY OF BRISTOL

A dissertation submitted to the University of Bristol in ac-
cordance with the requirements of the degree of DOCTOR

OF PHILOSOPHY in the Faculty of Engineering.

MARCH 2018

Word count: forty-one thousand five hundred

ABSTRACT

The IoT and mobile industries are predicted to grow exponentially over the next few
decades. Battery technologies, which are essential to embedded devices, are developing
at a much slower pace. This results in increases in battery area and charge time in order

to keep up with rising device energy usage. In order to maintain the practicality of mobile
devices and reduce their environmental impact, a great improvement needs to be made to
increase the energy efficiency of consumer devices. Increasing demand in the mobile industry
for very efficient hardware has seen the rise of more Heterogeneous Systems(HS), which
combine multiple specialised Processing Units(PU) on a single Chip. This allows faster and
more energy-efficient execution of particular tasks on the optimised PUs. A very good example
of this is the ARM big.LITTLE System-on-Chip(SoC), which combines a low-power processor
with a high-performance one. The system allows for specific tasks to be migrated across the
two compute units in a way to maximize performance, while minimizing energy consumption.
This research aims to further explore the potential benefits of this configuration in terms of
energy management.

The primary aim of this work it to develop a flexible and stable methodology for devel-
oping power models on big.LITTLE that use the hardware event counters from the on-board
Performance Monitoring Unit(PMU). For these purposes several hardware platforms have
been used, with the majority of the results being obtained on the HARDKERNEL ODROID-
XU3 development board. Several directions for choosing the hardware events are explored,
with machine learning proving to be the most successful method. The resulting models are
compared against other work and report higher accuracy.

Since big.LITTLE is a multi-core system, both single-thread and multi-thread models are
explored. The final single-thread models have less than 3% prediction error for both CPU types
on the HARDKERNEL ODROID-XU3 board, making them capable of accurately capturing
system behaviour and distinguishing between the different energy levels. The multi-thread
models, however, have 5% error on the LITTLE processor and 9% error on the big processor,
which makes the big model unusable for accurate runtime prediction. This work identifies
the key limitations that PMU event based models suffer from on multi-core systems, which
are often overlooked. The multi-thread case is explored in much greater detail than any other
published work.

The most significant contribution are the fully heterogeneous power models, which use
PMU events from one processor type to derive an accurate power prediction of the other.
The main purpose is to predict the system behaviour when trying to migrate a task from one
processing cluster to the other. The models demonstrate less than 1% error for the single-thread
case and less than 3% error for the multi-thread case. These models have much lower error than
the individual processor models due to coarse prediction granularity. This work is unique for
big.LITTLE and truly explores the benefits of the HS for the purposes of energy management.

i

DEDICATION AND ACKNOWLEDGEMENTS

F irst and foremost I need to express my endless gratitude to my supervisor Dr Jose Nunez-
Yanez. He has been my academic guide for more than 8 years - from the moment I started
my MEng in Computer Science and Electronics at University of Bristol up until the end

of my PhD. I am certain that without his insight and almost monastic patience and faith in me
I would have failed long ago.

Also a big thank you to my industrial supervisor Dr Matthew Horsnell for providing
me with an excellent work environment, during my brief visits to ARM in Cambridge. His
vast knowledge has helped me immensely during my research. I would also like to thank Dr
Kerstin Eder for also being an excellent guide and a constant provider of support.

Thank you to Mr Eric Van Hensbergen for talking to me from across the world and helping
me with my first experiments. Thank you as well to Dr Stephan Diestelhorst, Mr Rene De Jong
and all the other colleagues at ARM Research for the welcoming and supportive environment.

A special thank you to Dr Samuel Xavier-de-Souza for our collaborative work. It came right
at the time where I should have been solely focused on my thesis, but I am glad we managed
to carry it out and produce some excellent results.

Big thanks to my friends in Bristol Dr Plamen Proynov and Mr Rosen Rachev for our
impromptu lunches and our entertaining conversations. Sharing all our experiences of the
academic life really brightened my mood.

My most sincere thanks to my family Polina, Slavka and Kiril. They have been a constant
stream of support and I would not have completed this journey without them. I hope I have
made them proud.

Finally, I would like to thank EPSRC and ARM Ltd. for funding my PhD and giving a start
to my academic career.

iii

AUTHOR’S DECLARATION

I declare that the work in this dissertation was carried out in accordance with the
requirements of the University’s Regulations and Code of Practice for Research
Degree Programmes and that it has not been submitted for any other academic

award. Except where indicated by specific reference in the text, the work is the
candidate’s own work. Work done in collaboration with, or with the assistance of,
others, is indicated as such. Any views expressed in the dissertation are those of
the author.

SIGNED: .. DATE: ..

v

TABLE OF CONTENTS

Page

List of Tables xi

List of Figures xiii

List of Acronyms xviii

List of Publications xx

1 Introduction 1
1.1 Heterogeneous Computing in Embedded Systems 1
1.2 The ARM big.LITTLE SoC . 4
1.3 Scope of this Thesis . 5
1.4 Thesis Structure . 7

2 Background 9
2.1 Energy Management . 10
2.2 Power Modelling . 14
2.3 big.LITTLE in Detail . 18

2.3.1 ARM Cortex-A15 CPU . 19
2.3.2 ARM Cortex-A7 CPU . 19
2.3.3 The Performance Monitoring Unit (PMU) . 20
2.3.4 Existing Energy Management Solutions for the big.LITTLE Platform . . . 21

2.4 Summary . 24

3 Development Platforms 25
3.1 ODROID XU+E . 26
3.2 ARM Versatile Express Motherboard with CoreTile Express TC2 Daughterboard 27
3.3 ODROID XU3 . 29
3.4 Summary . 32

4 Methodology 33

vii

TABLE OF CONTENTS

4.1 Data Collection . 35
4.1.1 Experimental Setup . 35
4.1.2 Workload Characteristics . 35
4.1.3 Workload Execution . 39

4.2 Data Processing . 40
4.2.1 Data Synchronization . 40
4.2.2 Data Concatenation and Analysis . 40

4.3 Model Generation . 41
4.3.1 Offline Analysis Using octave . 41
4.3.2 Event Selection . 42
4.3.3 Model Accuracy Metrics . 43
4.3.4 Model Validation and Comparison . 44

4.4 Summary . 45

5 Single-thread Models 46
5.1 Initial Results . 47

5.1.1 ODROID XU+E Power Models . 47
5.1.2 ARM Versatile Express Motherboard with CoreTile TC2 Daughterboard . 51
5.1.3 Platform Comparison between ARM Versatile Express Motherboard

with CoreTile TC2 Daughterboard and ODROID XU+E 57
5.2 Extending the model for the ODROID-XU3 platform 60

5.2.1 Full frequency range models . 63
5.2.2 Per-frequency models . 64

5.3 Comparison to related work . 65
5.4 Evaluating model reproducibility . 67
5.5 Methodology refinement using automatic search . 73
5.6 Analysing model performance between the mSD and eMMC memory cards . . . 77

5.6.1 Investigating mSD card stability . 80
5.6.2 Investigating eMMC card stability . 82
5.6.3 Addressing the temperature variability . 83

5.7 Further development - complete exploration of the PMU event set 83
5.8 Model validation and application . 87
5.9 Summary of results . 89

6 Multi-thread Models 91
6.1 Initial results . 91
6.2 Extended methodology . 93
6.3 Comparison to related work . 97
6.4 Summary of results . 98

viii

TABLE OF CONTENTS

7 Heterogeneous Models 100
7.1 Model purpose and significance . 100
7.2 Single-thread case . 102
7.3 Multi-thread case . 104
7.4 Collaboration . 107
7.5 Summary of Results . 108

8 Conclusions 110
8.1 Summary of research objectives . 110
8.2 Key contributions . 111
8.3 Future work . 113
8.4 Final remarks . 114

A Available PMU Events for the big.LITTLE System 115

B Power Modelling Workloads Train Test Set Splits 118
B.1 cBench Initial Partial Uneven Workset Split . 118
B.2 cBench Workset Split . 119
B.3 PARSEC Workset Split . 119

C Pseudocode Samples 120
C.1 Experiment Data Concatenation . 120
C.2 Per-Frequency Model Generation . 121
C.3 Bottom-Up Automatic Event Selection . 122
C.4 Top-Down Automatic Event Selection . 123
C.5 Exhaustive Automatic Event Selection . 124
C.6 Inter-Core Model Generation . 125

D Power Model Coefficients 126
D.1 ODROID XU+E Cortex-A15 Power Model Coefficients 126
D.2 ODROID XU+E Cortex-A7 Power Model Coefficients 127
D.3 Versatile Express with TC2 Cortex-A15 Power Model Coefficients 128
D.4 Versatile Express with TC2 Cortex-A7 Power Model Coefficients 128
D.5 ODROID-XU3 Cortex-A15 Single-Thread Power Model Coefficients 129
D.6 ODROID-XU3 Cortex-A7 Single-Thread Power Model Coefficients 130
D.7 ODROID-XU3 Cortex-A15 Multithread Power Model Coefficients 130
D.8 ODROID-XU3 Cortex-A7 Multithread Power Model Coefficients 131
D.9 ODROID-XU3 Cortex-A15 Single-Thread Inter-Core Power Model Coefficients . 132
D.10 ODROID-XU3 Cortex-A7 Single-Thread Inter-Core Power Model Coefficients . 132
D.11 ODROID-XU3 Cortex-A15 Multithread Inter-Core Power Model Coefficients . . 133

ix

TABLE OF CONTENTS

D.12 ODROID-XU3 Cortex-A7 Multithread Inter-Core Power Model Coefficients . . . 133

E Modified PARSEC Blackscholes for Heterogeneous Execution on 8 cores 135

Bibliography 136

x

LIST OF TABLES

TABLE Page

4.1 Characteristics of the methodology code for each stage 34

4.2 Overhead of the data collection stage of the methodology on the ODROID-XU3 board 40

4.3 Target error for the single-thread per-frequency power models on the ODROID-XU3
board . 43

4.4 Target error for the multi-thread per-frequency power models on the ODROID-XU3
board . 44

5.1 Performance of the single-thread power models for ARM Cortex-A15 on the
ODROID XU+E board . 48

5.2 Performance of the single-thread power models for ARM Cortex-A7 on the ODROID
XU+E board . 50

5.3 Performance of the single-thread power models for ARM Cortex-A15 on the Versa-
tile Express Motherboard with CoreTile TC2 Daughterboard platform 52

5.4 Performance of the single-thread power models for ARM Cortex-A7 on the Versatile
Express Motherboard with CoreTile TC2 Daughterboard platform 54

5.5 Model reference and total average error for the data in Figure 5.12 64

5.6 Model reference and total average error for the data in Figure 5.13 65

5.7 Model reference and total average error for the data in Figure 5.14 67

5.8 Difference between resource allocation using taskset and cset for both processor
types on the ODROID XU3 board . 68

5.9 Model reference and total average error for the data in Figure 5.16 70

5.10 Cross-correlation values between the events selected from P2EvL1 and P2EvL2 . . . 70

5.11 Average total individual model error for each of the five selected events 71

5.12 Model reference and total average error for the data in Figure 5.18 72

5.13 Model reference and total average error for the data in Figure 5.20 75

5.14 Model reference and total average error for the data in Figure 5.21 76

5.15 Model reference and total average error for the data in Figure 5.23 78

5.16 Model reference and total average error for the data in Figure 5.25 80

5.17 Model reference and total average error for the data in Figure 5.27 82

xi

LIST OF TABLES

5.18 Model reference and total average error for the data in Figure 5.29 84
5.19 Model reference and total average error for the data in Figure 5.30 85
5.20 Model reference and total average error for the data in Figure 5.32 89

6.1 Model reference and total average error for the data in Figure 6.1 93
6.2 Model reference and total average error for the data in Figure 6.2 95
6.3 Model reference and total average error for the data in Figure 6.3 96
6.4 Model reference and total average error for the data in Figure 6.5 98

7.1 Model reference and total average error for the data in Figure 7.2 104
7.2 Model reference and total average error for the data in Figure 7.3 106

xii

LIST OF FIGURES

FIGURE Page

1.1 Examples of Heterogeneous Computing Systems . 3
1.2 ARM big.LITTLE SoC concept . 4

2.1 Power Dissipation trends for Mobile Embedded Systems 11
2.2 Overview of the Samsung Exynos 5410 big.LITTLE SoC 18
2.3 Overview of the ARM Cortex-A15 PMU . 20
2.4 Overview of the Cluster Migration Scheduling Policy for the ARM big.LITTLE SoC 21
2.5 Overview of the In-Kernel Switcher Scheduling Policy for the ARM big.LITTLE SoC 22
2.6 Overview of the Global Task Scheduling Policy for the ARM big.LITTLE SoC 22
2.7 Example of CPU utilisation-based scheduling on big.LITTLE 24

3.1 Top view of the HARDKERNEL ODROID XU+E development board 26
3.2 Top view of the ARM Versatile Express Motherboard 28
3.3 Block diagram of the Arm CoreTile TC2 System Daughterboard 29
3.4 Top view of the HARDKERNEL ODROID XU3 development board 30
3.5 Power/Temperature relationship on the ODROID XU3 development platform

under three Thermal Management profiles . 32

4.1 Power modelling methodology stages . 34
4.2 Difference between executions of the two workload types on the ODROID-XU3 board 36
4.3 Characteristics of the cBench workload on the ODROID-XU3 development platform 38
4.4 Characteristics of the PARSEC 3.0 workload using 4 processing cores on the ODROID-

XU3 development platform . 39
4.5 Model generation and validation steps . 44

5.1 Characteristics of cBench running on ARM Cortex-A15 on the ODROID XU+E board 48
5.2 Characteristics of cBench running on ARM Cortex-A7 on the ODROID XU+E board 49
5.3 Characteristics of cBench running on ARM Cortex-A15 on the Versatile Express

Motherboard with CoreTile TC2 Daughterboard platform 51
5.4 Characteristics of cBench running on ARM Cortex-A7 on the Versatile Express

Motherboard with CoreTile TC2 Daughterboard platform 53

xiii

LIST OF FIGURES

5.5 Effects of the on-board cooling unit on the ARM Versatile Express Motherboard
with CoreTile TC2 Daughterboard platform for ARM Cortex-A15 55

5.6 Effects of increasing temperature over time on the ARM Versatile Express Mother-
board with CoreTile TC2 Daughterboard platform for ARM Cortex-A15 56

5.7 Effects of the on-board cooling unit on the ARM Versatile Express Motherboard
with CoreTile TC2 Daughterboard platform for ARM Cortex-A7 56

5.8 Difference between single-thread workload executions on the ARM Versatile Ex-
press Motherboard with CoreTile TC2 Daughterboard platform and the ODROID
XU+E board for ARM Cortex-A15 . 57

5.9 Difference between single-thread workload executions on the ARM Versatile Ex-
press Motherboard with CoreTile TC2 Daughterboard platform and the ODROID
XU+E board for ARM Cortex-A7 . 58

5.10 Difference between single-thread workload executions on ARM Cortex-A15 and
ARM Cortex-A7 on the ODROID XU+E board . 59

5.11 Difference between single-thread workload executions on ARM Cortex-A15 and
ARM Cortex-A7 on the ARM Versatile Express Motherboard with CoreTile TC2
Daughterboard platform . 60

5.12 Comparison between the generated full frequency range single-thread models for
both processor types on the ODROID XU3 board . 63

5.13 Comparison between the generated per-frequency level single-thread Physical, P2
and P2S models for both processor types on the ODROID XU3 board 64

5.14 Comparison between the generated per-frequency level single-thread P2S model
and other published work for both processor types on the ODROID XU3 board . . . 67

5.15 Example of system resource allocation using cset . 68

5.16 Comparison between the generated per-frequency level single-thread P2, P2EvL1
and P2EvL2 models for both processor types on the ODROID XU3 board 69

5.17 Experiment set-up for the platform difference analysis 71

5.18 Comparison between the generated per-frequency level single-thread low event
cross-correlation model for both processor types on each of the ODROID XU3 boards 72

5.19 Difference between single-thread workload executions on both processor types on
the ODROID XU3 boards . 73

5.20 Comparison between the generated per-frequency level single-thread P2, T&MLCC
and T&ASLE models for both processor types on the ODROID XU3 board 75

5.21 Comparison between the generated per-frequency level single-thread T&ASLE
model for both processor types on each of the ODROID XU3 boards 76

5.22 Difference between single-thread workload executions on both processor types on
the ODROID XU3 boards for the second board difference experiment 77

xiv

LIST OF FIGURES

5.23 Comparison between the generated per-frequency level single-thread T&MLCC
and T&ASLE models for both processor and memory card types on the ODROID
XU3 board . 78

5.24 Difference between single-thread workload executions on both processor types on
the ODROID XU3 board using both memory card types 79

5.25 Comparison between the repeatedly generated per-frequency level single-thread
T&ASLE model for both processor types on each of the ODROID XU3 boards using
the mSD card as OS driver . 80

5.26 Difference between single-thread workload executions on both processor types on
the ODROID XU3 board using the mSD card as OS driver 81

5.27 Comparison between the repeatedly generated per-frequency level single-thread
T&ASLE model for both processor types on each of the ODROID XU3 boards using
the eMMC card as OS driver . 81

5.28 Difference between single-thread workload executions on both processor types on
the ODROID XU3 board using the eMMC card as OS driver 82

5.29 Breakdown of the generated per-frequency level single-thread model errors at each
iteration of the automatic event selection algorithm for both processor types on the
ODROID XU3 board . 84

5.30 Comparison between the generated per-frequency level single-thread Automatic,
Collected and Intra-Core models for both processor types on the ODROID XU3 board 86

5.31 Difference between single-thread workload executions on both processor types on
the ODROID XU3 board . 86

5.32 Comparison between the generated per-frequency level single-thread collected
model and other published work for both processor types on the ODROID XU3 board 89

6.1 Comparison between the generated per-frequency level multi-thread models for
both processor types for different system configurations on the ODROID XU3 board 92

6.2 Comparison between the different automatic event selection methods for generating
per-frequency level multi-thread models for both processor types on the ODROID
XU3 board . 94

6.3 Comparison between the generated per-frequency level multi-thread Automatic,
Collected and Intra-Core models for both processor types on the ODROID XU3 board 95

6.4 Difference between multi-thread workload executions on both processor types on
the ODROID XU3 board . 96

6.5 Comparison between the generated per-frequency level multi-thread collected
model and other published work for both processor types on the ODROID XU3 board 98

7.1 Example usage of the heterogeneous models as a guide to a power-aware scheduler 101

xv

LIST OF FIGURES

7.2 Comparison between the generated per-frequency level single-thread Automatic,
Collected and Intra-Core models for both processor transition types on the ODROID
XU3 board . 103

7.3 Comparison between the generated per-frequency level multi-thread inter-core
Automatic, Collected and Single-Thread Events models for both processor transition
types on the ODROID XU3 board . 106

7.4 Performance of the generated heterogeneous workload execution time and CPU
energy models on the ODROID XU3 board . 108

E.1 PARSEC Blackscholes E/F Curve . 135

xvi

TABLE OF ACRONYMS

Acronym Explanation
ACPI Advanced Configuration and Power Interface
ASIC Application Specific Integrated Circuit
BBV Block Vectors
CCI Cache Coherent Interconnect
CM Cache Misses

CMT Cluster Migration
CPI Cycles-per-Instruction

CPU Central Processing Unit
CR Cache References

DCT Dynamic Concurrency Throttling
DEM Dynamic Energy Management
DSP Digital Signal Processing

DVFS Dynamic Frequency and Voltage Scaling
ES Embedded Systems

FLPA Functional Level Power Analysis
GPU Graphics Processing Unit
GTS Global Task Scheduler

HASS Heterogeneous-Aware Signature Supported
HC Heterogeneous Computing

HCS Heterogeneous Computing Systems
HDD Hard Disk Drive
HES Heterogeneous Embedded Systems

HMP Heterogeneous Multi-Processing
HS Heterogeneous Systems

RMS Root Mean Square
IKS In-Kernel Switcher

ILPA Instructional Level Power Analysis
IPC Instructions-per-Cycle
ISA Instruction Set Architecture

MPPA Massively Parallel Processor Array
OLS Ordinary Least Squares

PMU Performance Monitoring Unit
PU Processing Units

RAM Random Access Memory
SoC System-on-Chip

xvii

LIST OF PUBLICATIONS

[1] Nikov, Krastin, Jose L. Nunez-Yanez, and Matthew Horsnell. "Evaluation of hybrid run-time
power models for the ARM big. LITTLE architecture." Embedded and Ubiquitous Computing
(EUC), 2015 IEEE 13th International Conference on. IEEE, 2015.

[2] Xavier-de-Souza, Samuel, Krastin Nikov, Jose L. Nunez-Yanez, and Kerstin Eder. "The en-
ergy consumption benefits of DynamIQ for heterogeneous parallel workloads." ARM Research
Summit, 2017. [Poster. Work currently being prepared for submission to conference.]

[3] Nikov, Krastin and Jose L. Nunez-Yanez. "Real-Time Power Modelling on Heterogeneous
Embedded Systems." [Journal paper. Submitted to ACM Transactions on Architecture and
Code Optimization (TACO) December 2017.]

xix

C
H

A
P

T
E

R

1
INTRODUCTION

Mobile Computing is arguably the fastest growing consumer technology area in recent
history and it is a major part of the semiconductor industry. As a testament, the
Ericsson Mobile Report estimates 31.6 billion connected devices by the year 2023 [1].

However, recent effects like the deviation from Moore’s law and the emergence of Dark Silicon
[2] make it harder for industry to keep up with consumer demand for improved hardware. In
this thesis a possible solution to this problem is explored, namely the use of Heterogeneous
Systems coupled with power-aware Resource Management. A methodology for developing
accurate power models for a Heterogeneous System on a modern development platform has
been developed. It is argued that accurate power models are absolutely necessary to develop
energy-aware systems. The work presented in this thesis can be extended as the foundation of
developing an Energy Management system in the form of an advanced power-aware system
software scheduler for Embedded System platforms. This Chapter introduces the topic and
key terminology.

Section 1.1 introduces the concept of Heterogeneous Computing in the context of Embedded
Systems and gives examples of available configurations. Section 1.2 presents the focus platform
of this work, namely the ARM big.LITTLE System-on-Chip and describes its importance to the
semiconductor industry. The key purpose and objectives of this work along with the principles
used to achieve them are described in Section 1.3. The final Section 1.4 outlines the thesis
structure and contents.

1.1 Heterogeneous Computing in Embedded Systems

In general Heterogeneous Computing (HC) refers to a platform, which has more than one
type of Processing Unit (PU) a.k.a. cores. Usually, each PU is optimised for a specific set of

1

CHAPTER 1. INTRODUCTION

applications. This allows for increased performance at the cost of increased complexity, due
to the need to assign the appropriate tasks to the various processing cores. Nowadays there
are a large amount of different PU. This diversity is dictated by increases in consumer and
industry demands for optimisations targeting specific software applications and also advances
in technology. Here are a few examples that have been developed over the years and have
proven their usability in the industry:

• Central Processing Unit (CPU), the baseline type of PU capable of performing most tasks.

• Graphics Processing Unit (GPU), a specialized PU for computing graphical output and
more recently other highly parallels tasks.

• Digital Signal Processing (DSP), another specialized PU for analysing signals (speech,
radar, sensor arrays, digital images, communications, etc.).

• Vision Processing Unit (VPU), a more recent specialised PU designed for accelerating
artificial neural networks for computer vision and other machine learning related tasks.

• Other specific coprocessors, supervised by the CPU and helping with specific tasks
(floating point arithmetic, string processing, encryption, I/O interfacing, etc.).

Examples of various Heterogeneous Computing Systems (HCS) are shown in Figure 1.1.
In those examples the CPU is aided by one or many additional Coprocessors, optimised for
specific tasks.

HC is applied across all ranges of electronic products, from high performance servers
to home desktops to various Embedded Systems (ES). An ES combines both hardware and
software in order to perform a specific set of tasks. It lacks the flexibility of a General Purpose
computer, but is smaller in size, faster and consumes less power, because it is optimized
for a limited amount of tasks. It could be incorporated into bigger systems, or it could be a
standalone solution. ES have a wide variety of applications, ranging from consumer electronics,
such as mobile phones and cameras to the automotive industry as well as aviation and defence
systems. The hardware components of an ES provide the performance capability and are
usually packaged in a System-on-Chip (SoC). This means that all components including
the main processor, the various co-processors, the memory, peripherals, interconnect, etc.
are put on a single chip. This saves area and cost, which is crucial for most ES. The main
processing unit can be a dedicated application processor/a micro-controller, a flexible structure
of programmable hardware, or both. Using a dedicated piece of hardware to do computation or
an Application Specific Integrated Circuit (ASIC), results in longer development time, testing
and complexity, however it achieves better performance and less area.

The very competitive mobile industry in particular is trending towards including even
more specialized PU on the SoC die in order to satisfy consumer demands for specific content.

2

1.1. HETEROGENEOUS COMPUTING IN EMBEDDED SYSTEMS

Figure 1.1: Examples of Heterogeneous Computing Systems:

a) Variation 1 - System with two Processing Units a CPU and GPU

b) Variation 2 - System with a CPU and a specialised DSP Coprocessor

c) Variation 3 - Modern system with multiple Coprocessors

d) Variation 4 - System with two CPU variants and multiple Coprocessors

There is also a big movement in using existing established co-processors like GPUs and DSPs
to assist the CPU in more generic tasks in order to increase performance. For example there are
several programming models which allow GPUs to be able to do more generalized parallel
arithmetic and not just compute pixels like OpenCL [3] and CUDA [4] [5]. This can be used
when the GPU is done with its primary task and the CPU can offload some workloads for it.
This General Purpose GPU or GPGPU trend started from trying to increase the performance of
high-performance clusters and now it’s finding its way into mobile devices due to increased
consumer demand for more advanced content and also as a means for different competitors to
differentiate themselves.

3

CHAPTER 1. INTRODUCTION

1.2 The ARM big.LITTLE SoC

An example of a commercially successful mobile HC is the big.LITTLE SoC [6] developed
by ARM. The system was first announced in 2011 [7] and has quickly gained popularity.
The system combines a high-performance processor with a power efficient processor in a
configurable combination. The two processors use the same Instruction Set Architecture (ISA)
so are able to execute the same compiled code [8]. The aim is to achieve better power efficiency
by using the heterogeneity of the system to direct tasks towards the processor type they are
more optimized for. An example overview of the system is presented in Figure 1.2.

Figure 1.2: ARM big.LITTLE SoC concept. The big processor is more suitable for computation-
ally demanding tasks like web browsing, gaming, video filming, etc. The LITTLE processor is
optimised for less intensive tasks like calls, sms, email, etc. Tasks are transferred between the
two processors dynamically based on user demand.

It has two processor types with binary compatible processing cores, which differ in terms
of complexity. The more powerful processor is shown as big and the more power-efficient one
as LITTLE. Examples of the target applications of the two processors is given in Figure 1.2. The
big is aimed towards high performance demanding applications like web surfing, multimedia
and gaming. In contrast the LITTLE is aimed towards low energy demand applications, like
phone calls, messaging, email and listening to music.

Kumar et al. [9] demonstrate the capabilities of such single ISA systems. They have tested
various hardware configurations and scheduling policies and have concluded that Heteroge-
neous ISA Systems achieve overall an 18%-30% improvement in power efficiency over same
area homogeneous architecture depending on how advanced the scheduler is.

Another work that supports the use of Single ISA HC is Borkar et al. [2]. They predict that

4

1.3. SCOPE OF THIS THESIS

Moore’s Law will continue, but the power budget will no longer stay the same, resulting in the
effects of Dark Silicon. As transistors get smaller, device thermal dissipation will increase up
to the point where not all the components on the chip can be powered at the same time, hence
the term Dark Silicon.w They propose the use of heterogeneous specialized/configurable cores
to overcome this issue on a micro-architectural level. They claim that energy will be the key
limiter to performance and the aggressive use of accelerators (for small subset of problems)
can be key to increasing performance within the limiting power budget.

Hill at al. [10] perform a comprehensive study on extending Amdahl’s law [11] in the
multi-core era. They explore symmetric, asymmetric and dynamic multi-core designs. Symmetric
has either all cores parallel or grouped up in bigger units, according to Pollack’s rule. The
rule states that performance increase is proportional to the square root of the increase in
microarchitecture complexity [12]. An interpretation of this rule is that the most performance
per area can be obtained by using large quantities of low-complexity processing cores in a
Massively Parallel Processor Array (MPPA). In contrast, Asymmetric has 1 large combined Core
and many small ones in parallel. Dynamic assumes the hardware can be configured to have
all available simple cores in parallel and be able to dynamically combine them for optimal
execution. Their research also makes a compelling argument for the superiority of asymmetric
systems compared to symmetric ones in terms of performance increase and energy efficiency.

Woo et al. [13] highlight the applicability of a heterogeneous design with 1 big core and
several smaller cores in terms of performance per watt and performance per joule. Some of the
assumptions are also based on Pollack’s rule as in Hill et al. [10].

It is evident that Heterogeneous ISA Systems like ARM’s big.LITTLE could provide a way
for the mobile market to keep up with consumer demand and can be the way forward for the
entire industry. However, due to the increased complexity of such systems and their broader
energy usage variation, extra attention needs to be paid to the software side and particularly
the Energy Management policies.

1.3 Scope of this Thesis

This thesis is a response to the growing popularity of Heterogeneous Embedded Systems (HES)
and the need to address the energy demands of the growing Mobile market. The primary aim
is to evaluate if such systems can be used to improve performance and lower the energy usage
of consumer products. A large body of related work is examined with the conclusion that in
order to fully utilise the heterogeneous hardware, new energy management solutions at the
software level need to be developed with increased complexity. The current solutions use CPU
utilization data and other performance-measurement techniques to distribute the workload on
HS. This thesis proposes that power-aware schedulers can be better for energy management
by using power models that closely capture hardware energy usage.

5

CHAPTER 1. INTRODUCTION

In order to facilitate the development of such solutions, a methodology for generating
accurate run-time power models has been researched. The full step-by-step development
progress is described. Several platforms implementing the ARM big.LITTLE SoC have been
used for development, namely the Hardkernel ODROID XU+E [14], the ARM Versatile Ex-
press Motherboard [15] [16] with ARM CoreTile TC2 Daughterboard [17] and the Hardkernel
ODROID XU3 [18]. The pitfalls and challenges have been closely studied. Factors, such as
platform variability and memory system characteristics, that greatly influence system power
have been explored and analysed. As the methodology software has matured, the produced
models have demonstrated increased accuracy.

The models use system state information from the hardware performance counters in
the on-board PMU to dynamically predict power consumption. Several single-thread and
multi-thread workloads have been explored and compared, with cBench [19] and PARSEC
[20] being used to fit and test the models. The methodology is configured so that the workload
can easily be replaced, so that niche applications can also be targeted for power modelling.
In addition multiple techniques to choose the PMU events have been investigated. Custom
automatic search algorithms, have been developed to identify the best PMU events. This makes
the methodology potentially portable to other platforms.

A breakthrough achieved during this research is the modification of the methodology to
produce individual models for every CPU frequency level of the development platform. These
models are appropriately named per-frequency level models in this document. This is done
by reducing the amount of information the power model is trying to capture by limiting the
model data to the data points at each frequency level independently, thus producing a unique
set of model coefficients for every frequency level. This technique results in a much better
mathematical fitting over the data and lower model error, compared to a model fitted over the
full set of data points across all frequency levels of the development platform. These models
are shown to greatly improve accuracy and model system behaviour more closely. This is
shown to be a unique insight into power modelling and a contribution to the knowledge in the
field in Nikov et al. [21].

At several key points during development the methodology has been used to validate
other published work and compare the research against their power models with the produced
models achieving significantly lower error that the published models. Model accuracy can
vary greatly between different system configurations and workloads used in the experiments
as is shown in the results of the comparison. Therefore, this research has focused not only on
producing models of highest accuracy, but also a robust, adaptable methodology, capable of
generating models tailored to specific scenarios.

The final produced single-thread models demonstrate a 2.5% to 2.9% average error for
the big and LITTLE processors respectively. This is shown to be accurate enough to capture
the full behaviour of the target platform, thus these models can be used as the basis of a

6

1.4. THESIS STRUCTURE

power-aware scheduling solution. Extra attention has been paid to the multi-thread case, since
the octa-core ODROID-XU3 development platform has a very broad energy consumption
spectrum. The multi-thread models exhibit a 9% to 5.7% average error for the big and for
the LITTLE processors respectively and are shown to be unable to capture system behaviour
accurately with relation to the minimum accuracy requirement for real-time use. The causes of
this are examined and the complexities of the multi-thread case are documented.

As a final contribution this thesis describes the developed full heterogeneous models for
the system. The models use PMU events from one processor type to try and predict the average
power of the other. This is done using a mathematical scaling technique for the events of the
origin processor. They can then be used with the power model equation of the target processor
to obtain an estimate of the average power if the workload is executed on it. The reported
prediction error is 2.3% to 1.6% when going from LITTLE to big and big to LITTLE respectively.
Because of the event scaling method, the models can be used to predict between any two
frequency levels of the processors. Due to the differences between the two processor types,
only PMU events common for both of them can be used in this type of model. Using the
automatic search algorithms unique models have been developed for the different scenarios.
This technique can only predict average power at slower intervals, but can be used as an
accurate basis to form advanced power-aware schedulers. This work, including the finalized
single and multi-thread models has been submitted to ACM TACO and is awaiting review.

Finally the resulting work from a collaboration with the Universidade Federal do Rio
Grande do Norte Department of Computer Engineering and Automation is described in the
thesis. A model capable of capturing the performance and energy usage behaviour of all 8 cores
has been developed. The unique characteristic is that the model uses training data only from
single-thread data of the LITTLE processor and mathematical methods to scale the model for
any system configuration. The model also considers the level of workload concurrency and can
be used to explore potential energy savings for differing configurations. Validation is done on
an ODROID-XU3 development board using the final developed methodology, demonstrating
error rates lower than 1.6% and 4.6% for performance and energy consumption, respectively.
This work has been presented as a poster at ARM Research Summit 2017 [22].

1.4 Thesis Structure

This thesis continues in 7 other Chapters, organized as follows:

Chapter 2 Background gives an in-depth overview of current Energy Management Solutions
for ES, with specific details for the ARM big.LITTLE SoC. It also provides a breakdown
and comparison of published power modelling methodologies and helps identify the
research focus.

7

CHAPTER 1. INTRODUCTION

Chapter 3 Development Platforms showcases the three systems used to develop the method-
ology. A particular focus is placed on the HARDKERNEL ODROID-XU3 board, which is
used for the majority of the research.

Chapter 4 Methodology describes the software tools developed for generating accurate power
models. These include the system configuration and data collection, the experiment
workloads, the processing of the experiment data and how the power models are built
and validated.

Chapter 5 Single-Thread Models demonstrates the research in developing power models for
the single-thread scenario. Starting initially with coarse-grained models for just one
frequency for each processor type and extending them to highly accurate run-time power
models capable of capturing the entire CPU energy usage with under 3% error. Along
the way key stages of the methodology are discussed and unexpected factors that affect
system and model stability are investigated, such as the type of flash memory used on
the development board.

Chapter 6 Multi-Thread Models continues from the experiments in Chapter 5 and details
how the methodology is extended to the multi-thread case. New search algorithms and
optimisation criteria are developed in order to improve model accuracy. This chapter
demonstrates that the multi-thread case is too complex to be captured with the limited
number of PMU events available on the ODROID-XU3.

Chapter 7 Heterogeneous Models details the final part of this research. It involves researching
comprehensive models that truly capture the behaviour of the heterogeneous system.
Building on some techniques from Chapter 5, power models which can predict average
power between the two processor types using PMU event scaling are developed. This
chapter also details the recent collaboration with Federal University of Rio Grande do
Norte. The collaborative research involved using the developed methodology on the
HARDKERNEL ODROID-XU3 platform to fit and validate a different set of mathematical
multi-core heterogeneous models for CPU power and performance. At the time of writing
this document, this work is still ongoing and the initial results are being prepared for
submission to a conference.

Chapter 8 The final chapter gives a brief overview of the research objectives and summarises
the most important contributions of this thesis. It also discusses unresolved problems
and areas for future exploration.

8

C
H

A
P

T
E

R

2
BACKGROUND

The initial phase of this research involved an in-depth analysis of the current state of the
art in energy management and power modelling techniques for computing systems. A
thorough understanding of the developed trends was required in order to identify an

area that that can be improved upon. The researcher’s comprehensive literature review on the
topic is presented in this Chapter.

The investigation starts in Section 2.1 by describing the various strategies for Energy
Management in Computer Systems that have been developed over the years, with a focus on
Embedded Systems and the ARM big.LITTLE SoC in particular.

The different methods for power modelling in the industry are summarized Section 2.2,
focusing on other CPU hardware-event-based models, including other research directed at
the ARM big.LITTLE SoC. Details of the power models used in the validation and comparison
steps of the methodology are also given in this Section.

The third Section 2.3 gives a more detailed overview of the ARM big.LITTLE SoC. The
various system configurations and implementations are explored. Details are also given about
the two processor types, as well as the available hardware events and counters. Details of the
existing energy management scheduler, which migrates tasks between the processor types, are
presented.

The final Section 2.4 concludes this Chapter with a short summary, outlying the key research
papers from Sections 2.1 and 2.2 and unique characteristics of the ARM big.LITTLE SoC from
Section 2.3.

9

CHAPTER 2. BACKGROUND

2.1 Energy Management

Most electronic systems are designed to deliver peak performance at the lowest energy cost
and environmental impact (heat, noise). This is even more prevalent in computing systems.
A prime example are smartphones, which need to perform very complex energy-demanding
tasks (playing multimedia, web browsing, gaming, etc.) while relying on limited battery power.
This requires very efficient design and allocation of computing resources to the software tasks.
This is handled by the device EM policy. In the context of this work EM is looked at from the
software side and complex hardware designs are not explored. The key principle of energy
conservation is that devices are usually not required to execute complex workloads all the
time. A successful EM tunes device performance to the workload demand so that energy is
not wasted when the device is not in active use. A key part of this process involves being able
to accurately estimate workload behaviour and demand in order to scale the performance.
Dynamic Energy Management(DEM) policies are able to do this during workload runtime
and are present in most consumer oriented devices, which are designed to run a wide range
of workloads. There are many existing approaches to DEM with various performances and
various levels of adoption by the semiconductor industry [23].

The closes example of a widespread DEM solution for desktop systems is Advanced
Configuration and Power Interface (ACPI) [24]. It is a specification which provides an open
standard for EM by desktop Operating Systems on a large number of supported system
architectures. The latest revision "6.2 Errata A" was released in September 2017 [25] and is
currently supported by all major PC components designers and manufacturers and many
desktop OS.

ACPI defines power states for systems, labelled as G [0-3], and devices, labelled as D [0-
3]. G0 and D0 mean the system/device is fully on. G3 and D3 indicate system/device off
and states in between turn on/off different system or device components. For example G1
indicates that the system is sleeping and it itself has several different sleep states, C [1-4],
ranging from CPU on but not executing instructions (idle) to CPU off and volatile memory
Random Access Memory(RAM) saved to non-volatile memory Hard Disk Drive(HDD). These
states affect how quickly the system state can be restored on next wake up. ACPI also defines
specific processor states C[0-x] which enable/disable specific functions of the CPU such as
maintaining cache coherency and are dependent on the specific processor (some have up to
10 C states). ACPI also supports performance, or P, states which indicate different levels of
scaled voltage/frequency levels for the device essentially throttling the speed of the device
but reducing energy consumption and can be accessed when CPU is on - C0, or for the device
when it is on - D0. These performance throttling states are in broader terms a type of Dynamic
Frequency and Voltage Scaling(DVFS) which scales the power rail voltage and clock frequency
of the processor in order to reduce its power consumption. In the context of ACPI, the DVFS
in P states is done by the OS, when it can determine that the processor can be slowed down

10

2.1. ENERGY MANAGEMENT

and still perform the workload in time, for example if applications become memory bound
the OS can enter the CPU in a higher (less energy demanding) P state, during a more memory
intensive execution phase that does not require many computations, and then bring it back to
full speed, thus saving energy. Recently more and more GPUs are starting to have extensive P
state support as well.

ACPI may be a good example of a widely adopted EM specification, but ES are not as
complex as desktop computers and consume much less power in general to warrant many
different system states. Currently these is no universal EM approach available for ES with
may different strategies being used such as Power-Aware Software Compilation, Low Power
Bus Encoding, Low Power System Synthesis, Dynamic Power Management and DVFS [26].
It is becoming ever more critical to develop better EM solutions for the current and future
generations of ES. Figure 2.1 depicts current trends in Power Dissipation for Mobile Embedded
Systems based on data from Samsung in 2011[27][28].

Figure 2.1: Power Dissipation trends for Mobile Embedded Systems. Data from Samsung,
the world leading smartphone manufacturer, shows that battery technologies cannot keep
up with projected system power consumption caused by increasing consumer performance
demands [27][28].

The presented trend seems quite alarming, since it shows that battery technologies are
not being able to keep up with the demand for more power, so even more physically bigger
batteries will be needed to power mobile devices in the future. Not only that, but also existing
EM methodologies cannot keep up with industry demand. HES like big.LITTLE provide the

11

CHAPTER 2. BACKGROUND

necessary hardware platform for advances in low-power design, however Esmaeilzadeh et al.
[29] and Shafique et al. [30] argue that further advances in Power Management are still needed
to keep up with Moore’s Law.

Energy Management is becoming increasingly complex as well, because power consump-
tion in modern chips is becoming harder and harder to define mathematically. Traditionally
the total chip power on a MOSFET system has been defined as:

PTOT ALL = PSY STEM +PLEAK AGE +PDY N AMIC (2.1)

In this equation, PLEAK AGE +PDY N AMIC is the power consumed by the CPU and PSY STEM

is the power consumed by the rest of the system. PDY N AMIC is the power consumed by the
CPU during the switching activities of transistors during computation. PLEAK AGE is power
originating from leakage effects inherent to silicon-based transistors and is dependent on
manufacturing technology and not the CPU workload.

PDY N AMIC can be expressed in terms of CPU chip per clock switching capacitance as
C, CPU voltage as V , Scaling activity vector as A and CPU frequency as f as the following
equation:

PDY N AMIC = C×V 2 × A× f (2.2)

Naturally in the past, when PDY N AMIC constituted the much larger part of the CPU power
consumption, one could just reduce the CPU frequency and voltage and expect reduction in
energy consumption due to the quadratic relationship between voltage and power. PLEAK AGE

is also shown to be related to operating voltage, so reducing CPU voltage can greatly reduce
the overall power of the entire system. This is why DVFS strategies are quite effective for EM.

As components become smaller, static power increases and is becoming a more dominant
part of the power consumption of the device. De Vogeleer et al. [31] highlight the convex
relationship between energy and CPU frequency on a modern mobile device, indicating that
the lowest voltage/frequency CPU operating point is not the most energy-efficient.

Due to these reasons it is argued that any successful EM solutions for ES need to be able to
capture this complex relationship between energy and frequency. One feasible way of doing
this is to use accurate CPU power models in order to determine the most optimal configuration.
Following are a few examples of EM solutions utilising different forms of power estimators.

A notable example of an Heterogeneous Multi-Processing (HMP) scheduler targeting HES
is Thread Motion (TM) by Rangan et al. [32]. They propose a scheme to dynamically analyse
and migrate threads between processing cores with different, but fixed voltage/frequency
levels. TM uses CPU Cycles-per-Instruction(CPI) prediction to assign program threads to
faster cores and calculates migration cost to adjust for overhead and ensure energy savings.
It is tested on SPEC 2006 and achieves around 20% improvement compared to a static DVFS
scheme for the same power budget, with only 1% power overhead. This scheduler is designed
to run on a dedicated microcontroller, however it can also be incorporated into the operating
software.

12

2.1. ENERGY MANAGEMENT

Choi et al. [33] in contrast, propose a software DVFS algorithm that separates activities
into CPU or Memory intensive. Their approach uses the fact that the CPU clock can be
reduced when RAM intensive activities are performed and vice versa. Their algorithm monitors
dynamic events at runtime to and does not need compiler support or modification to the
program. It uses a regression model on PMU events as well as instruction information to
determine CPU idle time due to memory stalls by estimating the ratio of off-chip to on-chip
computation time. The scheduler is tested with various Linux utility programs and they report
70% CPU energy saving with 12% performance degradation for memory intensive programs
and 15% to 60% CPU energy savings with 5% to 20% performance degradation for CPU
intensive programs.

Shelepov et al. [34] propose Heterogeneous-Aware Signature Supported (HASS) scheduler.
They use an Intel framework called PIN to estimate cache miss rates for different CPU con-
figurations (the different domains of the heterogeneous system) and this constitutes the code
signature and instrument the code with this information. HASS uses this information to make
decisions on migrating tasks. It is evaluated on several platforms featuring modern Intel and
AMD CPUs running SPEC 2000 [35] with a reported 15% speedup compared to an on-line
IPC-based phase-aware scheduler and it did perform better.

Curtis-Maury et al. [36] present a very interesting approach for allocating resources for
HPC systems, which shows how IPC-driven schedulers like [34] can be used in an Energy
Management context. The scheduler utilized both DVFS and Dynamic Concurrency Throttling
(DCT) to determine the fastest configuration on run-time. The scheduler uses compiler support
in the form of an extension to the Intel OpenMP [37] compiler with added mechanistic-
empirical prediction models, which use PMU events, for estimating effective IPC (effective
IPC is IPC without parallelisation and synchronization instructions). The models are trained
on the NAS Parallel Benchmarks [38] and the development platform features an Intel Xeon
E5320. The model information is then instrumented into the code at compile time and used by
the scheduler. The scheduler achieves a performance increase of 14%, power savings of 6%
and energy savings of 19% compared to running all cores on maximum frequency. This clearly
shows that optimizing performance can reduce energy usage.

Of particular interest is also the work of Imes et al. [39]. They investigate heuristic power-
optimization scheduling techniques for an Intel and a big.LITTLE platform. The PARSEC
benchmarks [40] are used to evaluate race-to-idle and never-idle techniques for optimizing
power consumption. Results indicate that on the Intel platform race-to-idle is usually better
and on the big.LITTLE platform never-idle saves the most amount of energy. This goes to show
that existing solutions for Intel or AMD CPUs cannot be blindly migrated for ARM big.LITTLE
CPUs and further research in the field is required dedicated for big.LITTLE HMP.

Craeynest et al. [41] also investigate scheduling solutions for big.LITTLE. They have devel-
oped PIE, an experimental scheduler that focuses on determining Memory and Instruction

13

CHAPTER 2. BACKGROUND

Level Parallelism (MLP and ILP) using mathematical derivations from PMU activities to de-
termine which core to run on. The migration decision is based on performance thresholds,
which translate to power savings. The scheduler needs specific hardware support to make it
work, which makes it inapplicable in existing systems, however achieves around 5% to 8%
improvement in performance compared to existing system schedulers on SPEC 2006 [42].

2.2 Power Modelling

The ability to model system and CPU power has been investigated ever since the very birth
of the semiconductor industry. As electronic systems increase in complexity system power
can no longer be derived mathematically. Researchers have tackled this problem by using
Supervised Machine Learning to derive accurate power models. SML algorithms operate by
automatically mapping sample inputs to outputs. In the case for deriving power consumption,
the system/component of interest is driven by a controlled workload input and power con-
sumption as well as selected internal characteristics of the components are collected. The ML
algorithm then is used to derive a power model by mapping the internal characteristics from
all intervals to the power consumption. The derived mapping is then verified against another
input set, not used in training, since the aim is to predict power consumption for any future
workloads. In this section some of the published methodologies for developing power models
are summarized and contrasted to the developed approach.

An example of using Machine Learning to derive an equation for power consumption is
the work of Hsieh et al. [43]. They use Neural Networks to compute the power model for small
metal-oxide-semiconductor circuits achieving 4.1% accuracy against a test set. In their work
they monitor physical changes in the circuit and use those as predictors. However in modern
ES it is not feasible to use this approach because of the increased complexity and reduced size
of the circuit. Modern power models use high-level events to derive power, since they are
much easier to observe.

Takouna et al. [44] present a very minimal linear power model for the Intel Xeon E5540
CPU, which uses frequency and number of cores to predict power with an average of 7%
error. A limitation to this approach is that it cannot predict the changes in power consumption
at a particular frequency level, as it will only model the average power for that frequency.
This is illustrated in the model comparison in Chapter 5 Subsection 5.3 where the generated
single-thread models are compared with other published work, including Takouna et al.

The need for fine-granularity models is also shown by Sherwood et al. [45] who use
instructions grouped in Basic Block Vectors (BBV) to identify different phases in program
execution and characterize their behaviour.

Another successful way to observe finer changes in program execution is using hardware
system information available from the Performance Monitoring Units on a CPU. Historically

14

2.2. POWER MODELLING

PMUs have been used to estimate performance, however research has shown that CPU/system
power estimation is also possible.

The work by Isci et al. [46] and Bertran et al. [47] use PMU events to compute accurate
fine-grained power models. Isci compare BBVs computed from instruction blocks or PMU
events on a Pentium 4 CPU and concludes that Overall PMU phases are up to 33% more
accurate when tested on SPEC CPU2000.

Bertran et al. [47] present an empirical 2-level Functional Level Power Analysis (FLPA)
model for an Intel Core2 Duo CPU. It splits the architecture into functional blocks (Front
End; Integer; Floating Point; Branch Prediction; L1 Cache; L2 Cache; Front Side Bus) and
then develops power models individually using tailored micro benchmarks and specific PMU
events for every block. The system-level power model is then computed as an Ordinary Least
Squares (OLS) liner regression [48] on the block power models and is able to successfully
predict program phases within 83.91% success when tested on SPEC CPU2006. Tested against
more basic models showing that even though they can achieve similarly low error percentage
they are pretty bad at following program phases unlike the FLPA model.

In contrast to this is the work of Nunez-Yanez et al. [49], which makes a strong case that
system-level modelling is better that component level modelling, They use a large number of
PMU events collected with a simulator on an ARM Cortex-A9, to train a linear model using
linear regression. Instead of using micro benchmarks they use cBench [19] as a workload stress
the entire system as a whole and report an average of 5% estimation error.

Pricopi et al. [50] develop complex models for predicting performance by predicting the
CPI stack. As part of their work, however, they have also built a mechanistic model for the
ARM Cortex-A15, which utilises CPU design experience and a deeper understanding of the
architecture to select the list of PMU events used. They train the model with an average error
of 2.6% when trained and tested on SPEC CPU2000 [35] and SPEC CPU2006 [42] benchmark
suites. They have not produced a model for the ARM Cortex-A7 on the justification that the
processor does not exhibit much variation in its power dissipation and can be approximated
by a single number. In this research this assumption is refuted and it is demonstrated that the
ARM Cortex-A7 also exhibits significant power variation and dedicated power models are
required to capture its behaviour. Their work is done on an experimental platform, the ARM
Versatile Express Motherboard [15] with CoreTile TC2 Daughterboard [17], and on a single
CPU frequency, hence the simplified power profile. Nevertheless this is one of the earliest PMU
based models available for the ARMv7 architecture and provides great insight into the use
of PMU events for power modelling. Their research platform is also featured in this research
with information given in Chapter 4, Section 3.2. Their power model is also used in the model
comparison and validation for the developed single and multi-thread models for the ARM
Cortex-A15 in Chapters 5 and 6.

Similarly, Singh et al. [51] have developed a power model based on 4 PMU events on AMD

15

CHAPTER 2. BACKGROUND

Phenom 9500 CPU. They use micro benchmarks to train the model and events are collected
every second. The model is computed using piece-wise linear regression with least squares
estimator and is tested on NAS, SPEC-OMP, and SPEC 2006 with median errors of 5.8%, 3.9%,
and 7.2% respectively. They further this work by using the model to guide a single-thread
scheduler, which suspends processes to ensure a power budget. This shows how power models
can be used effectively in dynamic schedulers ho help improve the power efficiency of systems.

Rodrigues et al. [52] develop a model, designed to offer the most accuracy with a minimal
set of events for both a high-performance and a low-power execution unit, represented by an
unnamed Intel Nehalem and Atom processors in a simulation environment. Their research is
also very interesting, because the authors have performed a comprehensive analysis of PMU
events by comparing several models, utilising different numbers of predictors. The models
are trained and validated on an extensive suit of benchmarks, consisting of SPEC 2000 [35],
MiBench [53] and mediabench [54]. The final reported model error is less than 5% for both
CPU types for a single-core set-up. Their models were attempted for translation to the ARM
big.LITTLE SoC platforms in order to be validated in this research, but unfortunately they used
some particular pipeline stall events unavailable in the ARM PMU.

Some researchers have successfully combined physical information about the platform,
such as frequency and mechanistic information like pipeline depth with PMU events to achieve
complex high-accuracy models. Blume et al. [55] present a very thorough research on different
model generation methodologies. Models were built for a stand-alone ARM 940T CPU as
well as a complex OMAP5912 system (ARM926EJ-S and C55x DSP cores) and tested on a
wide-ranging workload. A complex Functional and Instructional Level Power Analysis (ILPA)
approach is compared to a simpler FPLA one and just a frequency based model highlighting
that model performance increases with its complexity. The FLPA/ILPA model achieves up
to 9% accuracy on the standalone ARM core and 4% on the OMAP system, highlighting that
complex systems hide some of the dynamic power usage.

Rethinagiri et al. [56] present another work incorporating physical platform information
and PMU events to predict power consumption. They have developed a power-estimation
tool for embedded systems, incorporating physical platform information and PMU events to
predict power consumption, tested for ARM9, ARM Cortex-A8 and ARM Cortex-A9 CPUs.
They base their approach around accurate run-time system-level power models and use micro
benchmarks to obtain cache information and intuitively selected PMU events and train a linear
model using Ordinary Least Squares linear regression [57] . Their model has a small set of
regressands, since they use just CPU frequency and 4 PMU events. Despite this they report
around 4% for all three CPUs on a custom microbenchmark test set. The interesting thing about
this model is the heavy emphasis on cache events. This model is also used for comparison in
this research in Chapters 5 and 6. It is demonstrated that this model performs poorly, precisely
due to the high variability of cache events in complex workloads. This research shows that

16

2.2. POWER MODELLING

analysing the events with high variation and removing them from the event selection process
results in a much more stable and accurate models.

Eyerman et al. [58] also build mechanistic-empirical models to predict CPU cycles on a wide
range of Intel processors. The interesting aspect of their research is their robust methodology
which they use to test the accuracy of purely empirical models (in which all estimation events
are dynamic) compared to mechanistic-empirical ones (with added information about system
components, like cache size, pipeline depth, etc.) . Their results using SPEC CPU2000 and
SPEC CPU2006 show that purely empirical models are quite prone to overfitting the data at
the benefit of reduced complexity.

Jacobson et al. [59] have investigating how the number of events affects the model perfor-
mance. They use a cycle-accurate simulator to run various workloads including SPEC 2006 and
other commercial applications on a POWER7 CPU. 10% of the workload is used to train the
model and the remaining 90% is used to test. They collect 2300 different attributes and after a
thorough correlation analysis a final 54 attributes grouped in 35 pairs were chosen for a scalable
model. Their research shows that 8 attributes is enough for accurate (5%) power prediction,
but the additional events are added for better model scalability for future technology trends
(which is validated against a scaled reference platform). Another interesting aspect of this
work is the comparison between the mathematical derivations of the top 8 events with an
expert-driven approach, which showed that the intuitive approach does not always give good
results.

Another approach to predicting power is using information about the CPU state and
utilization. For example, Zhang et al. [60] examine the performance of the Chrome web
browser on multi-core smartphone platforms. Their work shows that existing models based
only on frequency and CPU utilization are not accurate for multi-core systems. They propose
a model using also weighted average duration spend in idle states and report 96% accuracy
on their own constructed set of benchmarks. However their model uses a predictor for ACPI
states to estimate CPU idle time, which is very difficult to do in real-time so it only works
offline.

A similar approach is used by Walker et al. [61]. They present two different methodologies
for 2 development platforms. They develop a model using 4 PMU events for a system featuring
the ARM Cortex-A8. With that approach they report 1.9% average error while predicting power
consumption using MiBench [53] as a workload, which is the predecessor to cBench. They
also present a CPU frequency and utilization based model for a big.LITTLE platform, which
did not have support for PMU. Contrary to Zhang they obtain information about CPU time
spent in idle using information available from the Linux kernel running on the device. Tested
on the same workload as the PMU model, the CPU frequency and idle time model achieves
10.4% and 8.5% error for the ARM Cortex-A7 and ARM Cortex-A15 respectively. This model is
used in Chapter 5, Subsection 5.3 for comparison against the generated models. Those results

17

CHAPTER 2. BACKGROUND

show this model having a significantly higher error than reported. The same researchers have
continued their work [62] and have developed a model for big.LITLE on the HARDKERNEL
ODROID XU3 [18] development board. That is also the main platform used in this research
and its characteristics are presented in Chapter 3, Section 3.3. Their updated methodology
uses the SPEC 2006 [42] workload and a simple SML method to traverse the list of available
PMU events. They have developed individual models for the ARM Cortex-A15 and ARM
Cortex-A7, though only the events list for the former is published. Their model is used in the
model comparison and validation experiments in Chapters 5 and 6. They have done a very
thorough research into the statistical and mathematical drawbacks of regression-based models
had have presented a method for increasing model accuracy and flexibility by addressing the
problem of heteroskedasticity in power modelling and report 2.8% and 3.8% average error for
the ARM Cortex-A15 and ARM Cortex-A7. This work proposes a more effective strategy to
ensure model accuracy and stability combined with an extended analysis of different model
event selection search algorithms. These are described in Chapter 4, Section 4.3.

2.3 big.LITTLE in Detail

Figure 2.2: Overview of the Samsung Exynos 5410 big.LITTLE SoC. The Samsung Exynos
5410 SoC [63] is the first commercial big.LITTLE implementation, released in 2011 [64]. The
CPU consists of 4 ARM Cortex-A15 and 4 ARM Cortex-A7 processing cores, grouped in two
clusters. The system could only use one cluster at a time, due to limitations in the scheduler.

In the previous Chapter 1 the ARM big.LITTLE SoC and some of the research validating the
benefits of such Heterogeneous Single-ISA Systems were briefly introduced. The methodology

18

2.3. BIG.LITTLE IN DETAIL

is aimed at big.LITTLE, because it is believed that utilising this hardware will help overcome
some of the foreseeable problems for the IoT and mobile industry. The best thing about
big.LITTLE is the software support and the availability of development platforms on the
market. 3 different platforms were used in this research and managed to find great software
support for all of them. This is detailed in Chapter 3. There are plenty of resources available
on [6] including a few white papers that detail the capabilities of the system [8] [65]. The
key feature of the Soc is the Cache Coherent Interconnect (CCI) [66] [67], which enables
quick task migration between the two CPU islands. The CCI interface is built on the AMBA
bridge specification [68], making it really configurable. This allows for great power savings by
utilising the LITTLE core while maintaining good performance levels. More details on how
task migration work are available in section 2.3.4.

The fist iteration of big.LITTLE came out in 2011 [64] [7] and one of the first industry
adopters of big.LITTE is Samsung [69] who use it as part of their Exynos SoCs. The first one
of them to become industry wide is the Samsung Exynos 5410 SoC [63]. It is an 8 core system
with 4 ARM Cortex-A15 and 4 ARM Cortex-A7 and it is commercially realised as the CPU of
the Samsung Galaxy S 5 [70]. An example of the SoC is given in Figure 2.2.

Since then ARM has moved on to migrate big.LITTLE to their ARMv8 64-bit ISA and
implement it with the more advanced Cortex-A53 and Cortex-A57 CPUs [71] [72] [73]. However
this work is done on the first generation of the big.LITTLE platform so the models are build for
the Cortex-A15 and Cortex-A7.

2.3.1 ARM Cortex-A15 CPU

The ARM Cortex-A15 CPU [74] [75] [76] is a high-performance 32-bit multi-core processor
implementing the ARMv7-A architecture. Each processor cluster can have up to 4 Cores, which
share an L2 cache. Each core has an individual L1 Instruction and Data cache. The processor is
capable of addressing up to 1 TB of memory. The key feature is its triple-issue out-of-order
15 stage pipeline which achieves a significant 50% improvement over its predecessor the
Cortex-A9, which is another highly used CPU in embedded systems. All these features mean
that the CPU is targeted heavily towards the more high-performance segment.

2.3.2 ARM Cortex-A7 CPU

The ARM Cortex-A7 CPU [77] [78], on the other hand is an extremely energy-efficient 32-bit
multi-core processor. It is also implementing the ARMv7-A ISA and both Cortex-A15 and
Cortex-A7 are binary compatible. The Cortex-A7 can also be configured to have up to 4 Cores
per CPU cluster with an optional integrated L2 cache subsystem. It has the same interconnect
capability as the Cortex-A15, but its distinctive feature is its 8-stage in-order partial dual-issue
pipeline. This design is and update from the Cortex-A5 and boast a 20% increased single-thread
performance, while maintaining energy efficiency levels.

19

CHAPTER 2. BACKGROUND

2.3.3 The Performance Monitoring Unit (PMU)

Figure 2.3: Overview of the ARM Cortex-A15 PMU. It has 6 programmable 32-bit performance
counters, with an additional dedicated counter for CPU cycles [75]. The counter values are
saved in special registers in the event of a system interrupt and/or overflow in order to provide
accurate, repeatable readings.

Hardware performance counters are special registers available in most modern day CPUs,
that allow tracking of system events on the hardware level. Example of such events are Cache
hits or refills, CPU cycles, Memory access, etc. These counters are typically configurable and are
able to collect from a large number of defined events. Since the number of counters is limited,
some implementations use multiplexing to switch between the events they are monitoring.
These counters are a great tool for low-level system monitoring and analysis and are used in
various applications. The main advantage of using hardware counters rather than software
tools is the low overhead of collection. In this research they were used them to try and capture
system behaviour for the purposes of predicting CPU power.

In ARMv7 the collection of hardware counters is called the Performance Monitoring Unit
(PMU). An overview of the PMU available in the Cortex-A15 is given in Figure 2.3. It provides

20

2.3. BIG.LITTLE IN DETAIL

six configurable counters with an additional seventh reserved just for CPU cycles [75]. In
contrast the PMU available for the Cortex-A7 only has four configurable counters, but still has
a dedicated one for CPU cycles [78]. A total of 67 different hardware events are available for
collection for the Cortex-A15 and 42 for the Cortex-A7. Interestingly only 23 are common to
both PMUs. A full list of the PMU events is available in the Appendix A.

In order to communicate with the PMU without a debugger and configure the performance
counters, the linux tool perf [79] was used. perf allows communication with the linux kernel
from userspace and can profile the entire system. The PMU events for collection can be specified
using the RAW identifiers shown in A.

2.3.4 Existing Energy Management Solutions for the big.LITTLE Platform

Figure 2.4: Overview of the Cluster Migration Scheduling Policy for the ARM big.LITTLE
SoC. The big and LITTLE processing cores are grouped in two clusters [80]. The OS can execute
tasks on only one of them at a time. When switching operating mode all tasks must be moved
to the other cluster.

In the context of Heterogeneous Embedded Systems in particular the big.LITTLE SoC, the
Energy Management system has an additional level of complexity. For that purpose ARM
have developed patches for the Linux and Android Operating Systems, which support a
custom scheduler for big.LITTLE [80]. The scheduler is a natural extension of DVFS, which
allows tasks to be migrated from one CPU cluster to the other. Thanks to the Cache Coherent

21

CHAPTER 2. BACKGROUND

Figure 2.5: Overview of the In-Kernel Switcher Scheduling Policy for the ARM big.LITTLE
SoC. The big and LITTLE processing cores are grouped in Virtual Cores, each giving access to
one physical core of each type [81]. Each Virtual Core can have only one physical core active
at a time (either the big or the LITTLE), controlled by the scheduling policy. Task migration
happens only within the Virtual Core, so the system can have at most 4 processing cores
running at a time.

Figure 2.6: Overview of the Global Task Scheduling Policy for the ARM big.LITTLE SoC.
The OS can schedule tasks to each big and LITTLE processing core independently, unlocking
the full capabilities of the SoC [82]. Task migration can be performed between any two compute
cores, regardless of their physical cluster association.

Interconnect the overhead of migrating the task is kept low. The scheduler has 3 operating
modes, depending on the particular implementation – Cluster Migration (CMT), In-Kernel
Switcher (IKS) and Global Task Scheduler(GTS). Most of the documentation for the big.LITTLE

22

2.3. BIG.LITTLE IN DETAIL

scheduler comes from ARM in the form of white papers [8] [81] [65] [82].

2.3.4.1 Cluster Migration

Cluster Migration, presented in Figure 2.4, is the first developed thread migration solution.
The OS scheduler can only select one of the clusters to execute all tasks. This means that only
4 cores can be utilised at the same time. This type of scheduler is available on the Samsung
Exynos 5410, which is used by the ODROID XU+E.

2.3.4.2 In-Kernel Switcher

The In-Kernel Switcher, presented in Figure 2.5, is the second scheduling solution developed
by ARM. Instead of migrating all the tasks between the clusters it pairs a big and a LITTLE core
as one virtual core. Which core is being utilised depends on the performance demand, with the
other core being shut off. This still limits the number of cores that can be used by the system,
but it allows more flexibility and big and LITTLE cores that can be on at the same time, as long
as they are not part of the same virtual core. Pourier [81] gives more details about the IKS.

2.3.4.3 Global Task Scheduler

The final scheduler developed by ARM is the Global Task Scheduler, presented in Figure 2.6,
which allows migration between any two CPU cores, even the same type. This also enables the
full capabilities of the system with the ability to use all cores at the same time. Task allocation
priority is given to the big cores. This implementation is available for the latest big.LITTLE
SoCs including the Samsung Exynos 5422. The GTS is available for one of the development
platforms - the ODROID XU3. More information about the GTS can be found here [65] [82].
[83] from Samsung describes their adoption of the GTS and comparing it to the initial CMT
scheduler.

2.3.4.4 Thread Migration Criteria

All the aforementioned schedulers rely on migration thresholds to decide when it is time to
migrate the task to a performance or a power-efficient CPU. Figure 2.7 gives a visual example
of that. The task when first scheduled starts at the power-efficient cluster and if the CPU
utilization gets above a certain threshold the scheduler moves the task to the performance
cluster. If the utilization drops then it moves back to the power-efficient CPU. The threshold
levels are dependent on implementation, but in all cases are chosen apart enough to prevent
overly zealous switching. More information about the different switching scenarios can be
found here [8].

23

CHAPTER 2. BACKGROUND

Figure 2.7: Example of CPU utilisation-based scheduling on big.LITTLE. The CPU state is
monitored when executing the task, which is migrated to the high-performance or the energy-
efficient processing core when the task load passes the corresponding up or down threshold
[8]. The utilisation thresholds are defined in the kernel and are specifically tuned to prevent
excessive task switching between the two processor types.

2.4 Summary

This chapter outlines the background research regarding the current state of energy manage-
ment and power modelling for embedded systems. Existing solutions are explored in detail
and the importance of HES in the Mobile industry as well as the need for advancements in
energy management solutions are determined.

Related work in the field of Power Modelling is also summarised. The majority of power
models do not consider the capabilities of heterogeneous systems and predominantly focus
on capturing the behaviour of isolated processing units, which is an issue that the proposed
heterogeneous models in Chapter 7 directly address. Some key models were listed, which are
validated with the developed methodology and are compared against the custom generated
models in Chapters 5 and 6.

Additionally a detailed description of the ARM big.LITTLE SoC is provided. This includes
details about the two processor types in the system - the ARM Cortex-A15 and the ARM
Cortex-A7 as well as the PMU and hardware events available on the chip. The operation of the
current CPU utilisation-based Energy Management policy for the ARM big.LITTLE SoC is also
presented in detail.

24

C
H

A
P

T
E

R

3
DEVELOPMENT PLATFORMS

Early research on big.LITTLE SoCs involved using simulators due to unavailability
of suitable hardware platforms. Since then several companies have come up with
development boards for big.LITTLE. The ideal development platform for the proposed

approach to power modelling is a system which has both PMU events as well as sensors to
collect the CPU power to be modelled. During the research 3 different boards implementing
the ARM big.LITTLE SoC were used to develop the power model generation methodology.
Information about these 3 development platforms is given in this Chapter.

Section 3.1 gives an overview of the HARDKERNEL ODROID XU+E platform [14], which
is used for the initial development of the methodology and generating the first power models.
The purchased board had a critical problem, however thanks to Mr Eric Van Hensbergen from
ARM, initial data was obtained.

The second platform used in this research is the ARM Versatile Express Motherboard [15]
with CoreTile Express A15x2_A7x3 (TC2) [17]. Overview of this platform is given in Section
3.2 This platform is well supported by ARM and Linaro software-wise, but the hardware man-
ufacturing process for the CoreTile Express TC2 is outdated, so the results that were obtained
were not very representative of modern technologies. The results from this platform were later
compared to the results obtained using the HARDKERNEL ODROID XU+E platform.

The third and final development platform used is the HARDKERNEL ODROID XU3[18],
described in Section 3.3. Extra focus is put on the ODROID XU3, since it is the development
board used for the majority of the experiments and most of the methodology was developed
on it. It has the most features and is the best supported of the three.

This Chapter concludes with a commentary on the challenges and key insights obtained
from using the three developments platforms presented in Section 3.4.

25

CHAPTER 3. DEVELOPMENT PLATFORMS

3.1 ODROID XU+E

The ODROID XU+E development platform by HARDKERNEL [14] is the first board used
in this research. It has an ARM big.LITTLE chip in the form of a Samsung Exynos 5410 SoC
[63], which features four ARM Cortex-A15 (big) [74] and four ARM Cortex-A7 CPU (LITTLE)
[77] and four Texas Instruments INA231 sensors [84], measuring the ARM Cortex-A15, ARM
Cortex-A7, RAM and GPU power. More information about the SoC is detailed in Section 1.2.
Figure 3.1 shows the top view of the board.

Figure 3.1: Top view of the HARDKERNEL ODROID XU+E development board. The first
platform used in this research to develop the model generation methodology and obtain the
initial results. Released in 2013 by HARDKERNEL, the platform features a Samsung Exynos
5410 SoC with 4 dedicated energy monitors - one for each proceeding cluster, one for the RAM
and one for the GPU [14].

On paper this seemed the ideal development platform specifically for this project and it
was sufficiently cheap to warrant an immediate purchase. However some critical problems
were discovered while setting up the board. Firstly, the kernel scheduler, which enables tasks to
migrate from the big to the LITTLE CPU cluster, was only capable of Cluster or Task Migration
[85]. This was not really significant in the beginning since the initial focus was on developing
power models, but it did provide overhead to the experiments, since both workload execution
and data collection were done on the target processing cluster.

The platform was set up with a minimal Ubuntu Server 12.04 and the latest kernel available
from HARDKERNEL. Afterwards the workflow, described later in Chapter 4,was set up and

26

3.2. ARM VERSATILE EXPRESS MOTHERBOARD WITH CORETILE EXPRESS TC2
DAUGHTERBOARD

then a second problem was discovered. Due to a hardware fault with the ODROID XU+E
board, the PMU was inaccessible and perf [86] was not able to collect any events, which was
critical to progress. Luckily the project industrial sponsor Dr Matt Horsnell, was able to provide
a point of contact with Mr Eric Van Hensbergen, who generously offered remote access to a
stable ODROID XU+E platform, so work was able to proceed.

Another issue was that the TI sensors were set up with a really low sampling rate (about 3
samples per second) so long workloads were needed to ensure collection of enough regression
points, which is one of the things that guided the choice of using cBench as workload. More
details on the workloads used in the power model generation methodology are given later in
Chapter 4.

In this initial stage of the research the workloads were run on the maximum frequency of
the ARM Cortex-A15 (1600 Mhz) and minimum on the ARM Cortex-A7 (500 Mhz), because
the goal was to test the methodology and use the extremes as case study. There was also a
limit on the number of events that could be collected, since the ARM Cortex-A7 PMU has 5
event counters, of which one is dedicated to cycles. In contrast, the ARM Cortex-A15 has 6+1
counters, however for the sake of consistency 4 PMU events + CPU cycles were collected for
both CPUs. The 4 events chosen were the ones read by default with perf: instructions, cache
references, cache misses and bus cycles. Details of these initial models are presented in Section
5.1.

3.2 ARM Versatile Express Motherboard with CoreTile Express
TC2 Daughterboard

As work progressed, the industrial sponsor provided access to another platform to test the
big.LITTLE power models on. The ARM Versatile Express Motherboard [15] [16] is a config-
urable system capable of hosting a number of configurations. For the purposes of this research
a CoreTile Express A15x2_A7x3 (TC2) Daughterboard [17] which is a big.LITTLE system [6]
was connected to the ARM Versatile Express Motherboard. Figure 3.2 shows a top view of the
ARM Versatile Express Motherboard and Figure 3.3 shows a block diagram of the CoreTile
Express TC2 Daughterboard.

The system implements 2 ARM Cortex-A15 and 3 ARM CortexA7 processing cores in a
big.LITTLE configuration. The board was set up with a terminal-based version of Ubuntu De-
veloper with the latest kernel, available from Linaro [88]. There were no issues with the PMU
and perf was working correctly, which made the model generating platform relatively straight-
forward to migrate from the ODROID XU+E. First step was to reproduce the experiments ran
on the ODROID XU+E and generate respective models for the new platform.

The only drawback of the development platform is that it uses an older manufacturing
process and thus its power usage is not really representative of a real-world device, in the

27

CHAPTER 3. DEVELOPMENT PLATFORMS

Figure 3.2: Top view of the ARM Versatile Express Motherboard. The second development
platform used in this research. It is intended to work with a selection of daughterboards, provid-
ing a number of experimental ARM based platforms [15]. For this research it was used with an
early implementation of a big.LITTLE SoC. The platform contains power sensors for both CPU
islands, which made it suitable for power modelling research.

way that the HARDKERNEL ODROID XU+E is since it has a Samsung Exynos SoC, which is
actually used in commercial devices. However, this board, has very good hardware sensors,
including an accumulating energy monitor. This made collecting power usage information
very convenient.

cBench was run on a similar configuration as on the ODROID XU+E, which is the fastest
possible frequency on the ARM Cortex-A15(1200Mhz on the CoreTile Express TC2 Daugh-
terboard) and slowest possible on the ARM Cortex-A7(175Mhz on CoreTile Express TC2
Daughterboard). In addition to generating power models a few additional experiments were
done. A “temperature spike” experiment was also performed to see how prolonged usage
without CPU cooling can affect the SoC power usage. This was done by running the con-
sumer_jpeg_c benchmark from the cBench suite 50 times with and 50 times without a cooling
fan. That specific benchmark was chosen, since it is quick and performance intensive, so
there was no long waiting period for the CPU to start dissipating large amount of heat. This
experiment was done in order to further investigate how the physical environment can affect

28

3.3. ODROID XU3

Figure 3.3: Block diagram of the Arm CoreTile TC2 System Daughterboard. This attachment
board was used with the ARM Versatile Express Motherboard to form a usable big.LITTLE
system in order to develop a power modelling methodology. The chip has 2 ARM Cortex-A15
and 3 ARM Cortex-A7 processing cores, split in two clusters, along with power sensors for
each cluster [87].

the SoC and how to take that into consideration when trying to build a power model. As
a final experiment the performance and energy usage between the ODROID XU+E and the
ARM Versatile Express Motherboard with CoreTile TC2 Daughterboard was compared and
it was identified that the more modern manufacturing process significantly reduces energy
consumption. These results are presented in detail later in Chapter 5.

3.3 ODROID XU3

At the time of finishing the power model generation experiments on the ARM Versatile Express
Motherboard with ARM CoreTile TC2 Daughterboard, HARDKERNEL released another
development board featuring the big.LITTLE SoC. The HARDKERNEL ODROID XU3 [18]

29

CHAPTER 3. DEVELOPMENT PLATFORMS

development platform has all of the features required to allow developing PMU-based power
models. It has an ARM big.LITTLE chip in the form of a Samsung Exynos 5422 SoC, which
features four ARM Cortex-A15 (the big) [74] and four ARM Cortex-A7 CPU (the LITTLE) [77].
The board also has four Texas Instruments INA231 sensors [84], measuring the ARM Cortex-
A15, ARM Cortex-A7, RAM and GPU power, current and voltage. These are highlighted in red
on Figure 3.4. Shin et al. [89] have explained the design and topology of the Exynos SoC in
more detail.

Figure 3.4: Top view of the HARDKERNEL ODROID XU3 development board. The final
development platform used in this research. It features a Samsung Exynos 5422 Octacore SoC
with fully working GTS and also has 4 on-board energy monitors - one for each processing
cluster, one for the RAM and one for the GPU [18].

This platform is one of the few ones with working GTS [85] which provides the ability to
use it in future stages of research. Another very important feature is that this platform has a
working PMU unit, which often does not work on development platforms using big.LITTLE
as documented by Walker et al. [61] and the initial research efforts on the HARDKERNEL
ODROID XU+E board.

Another interesting feature is that the TI energy monitors have a low sampling rate at about
2 samples per second. The ideal workloads for this system would be exhaustive benchmarks
with diverse behaviour in order to capture different scenarios and long runtime, which is
why cBench [19] and PARSEC 3.0 [20] were used. Specific mechanisms for experiment data

30

3.3. ODROID XU3

collections were developed, which reduce experiment power and performance overhead.
Details of the stages and techniques used in the methodology are available in Chapter 4.

The platform was set up with a minimal Lubuntu 12.04 running the latest kernel available
from the board support team. The platform OS is chosen to be small enough to avoid large
background software overhead, buts still have enough features to provide easy software
development. The software support allowed easy migration of the methodology to the new
platform. Because the HARDKERNEL ODROID XU3 is a successor to the HARDKERNEL
ODROID XU+E and uses a similar file system structure, most of the data collection tools were
reused.

Another key feature of the HARDKERNEL ODROID XU3 is that it has a broad DVFS range
with the ARM Cortex-A15 having 18 available frequency levels ranging from 0.2-2 GHz and
5 corresponding voltage levels and the ARM Cortex-A7 with 14 available frequency levels
from 0.2-1.4 GHz again with 5 available voltage levels. The Voltage/Frequency relationship is
presented on Figure 4.3a in Chapter 4. This increased complexity initially proved a significant
challenge, resulting in the first power models developed for the system exhibiting very low
accuracy. However, this was ultimately overcome by using a specific technique outlined in
Section 5.2.2. A significant range in power consumption for both processor types was observed
while running the workloads. An average power variation for the single-thread case was
recorded of up to 126% at 1.6 GHz and 143% at 0.8 GHz for the Cortex-A15 and Cortex-A7
respectively. This seems to indicate that the conclusion made by Pricopi et al. [50], which states
that due to its simplicity, the ARM Cortex-A7 power can be modelled by using single average
number for each frequency level, does not hold true for more modern systems. It is argued
that due to the high variation of the ARM Cortex-A7 a more complex model should be used to
accurately predict its power consumption.

The large amount of energy levels for the system is shown to be unnecessary, when multi-
thread power modelling is explored. In the multi-core case the last 2 frequencies from the ARM
Cortex-A15 experiments have been omitted, namely 1.9 and 2.0 GHz. This is due to the fact
that the PARSEC 3.0 workload would cause the CPU to throttle to 1.8 GHz when running on
all 4 available cores, despite the installed cooling unit.

A quick investigation as to how the fan affects the produced power models was also carried
out. Figure 3.5 shows the result of the thermalspike experiment, which involved running a single
workload multiple times consecutively with the on-board fan set up in 3 different cases. It can
be observed from the experiment that, at least for the single benchmark, the fan is sufficient
to cool the CPU even at low rpm. For the purposes of future experiments, the fan is kept
at maximum rpm. Temperature is also omitted from the model. This might seem like a bad
idea at first glance, since temperature contributes greatly to power dissipation. This is clearly
indicated by the thermalspike experiment as well. However, due to the on-board heat-sink and
fan, the cooling unit has a very unpredictable behaviour, which is why despite the fact that

31

CHAPTER 3. DEVELOPMENT PLATFORMS

the fan seems powerful enough the system still throttles at the high frequencies during the
multi-thread experiments. Also, since the CPU temperature is managed via the cooling unit
and thermal management controller, which are controlled by the OS, its behaviour cannot be
captured and used by the developed hardware-event-based power models.

(a) ARM Cortex-A15 Data (b) ARM Cortex-A7 Data

Figure 3.5: Power/Temperature relationship on the ODROID XU3 development platform
under three Thermal Management profiles. Results of repeatedly running a single-thread
benchmark on the ODROID XU3 board under 3 different configurations for the on-board
cooling system. The benchmark is executed on a single ARM Cortex-A15 core (on the left) and
an ARM Cortex-A7 core (on the right).

Last but not least, another interesting feature of this platform is the eMMC card slot in
addition to the standard mSD slot. A significant variation was identified when comparing
results obtained using and eMMC card and a mSD card as the board driver. This prompted
a detailed investigation of the effects of memory system on power. The outcome of those
experiments clearly showed that the eMMC card is much more stable and more suited for
power model development. The result of this investigation is presented in Section 5.6.

3.4 Summary

Brief details about the development platforms used in this research are presented. Some of the
problems with the HES are listed, such as lack of support and features and inconsistent perfor-
mance. A lot of unexpected variables like badly realised thermal management and memory
card volatility influence the system greatly and a lot of effort was spent trying to understand
and minimise these factors. It is safe to say that finding a suitable hardware development
platform for this research was a very big challenge. In the end, however, the HARDKERNEL
ODROID XU3 platform was successfully used to develop the methodology and produce
accurate real-time PMU-based models. Unfortunately all three of these development platforms
have been discontinued with HARDKERNEL no longer providing on-board power sensors
in their latest products. However, interest in the latest generation big.LITTLE is growing with
more and more companies including ARM wanting to produce research-viable boards.

32

C
H

A
P

T
E

R

4
METHODOLOGY

This chapter describes the novel methodology for generating real-time power models,
developed during the course of this research. It goes in detail about all the steps
and processes involved and the characteristics of the final completed workflow. The

completed methodology involves many different control processes and analysis scripts, which
can be split into three distinct stages:

1. Data Collection - The first stage involves setting up the software scripts and utilities on
the development platform along with the workloads. A custom control script is used to
direct program execution and collect sensor and PMU event samples at regular intervals.
More details about the platform set-up and used software are given in Section 4.1.

2. Data Processing - The next stage processes the collected experiment data. This involves
synchronising the different measurements and concatenating them in one big dataset.
This step is necessary since the model generation software analyses the data and com-
putes the model coefficients offline. This stage is described in Section 4.2.

3. Model Generation - The final stage of the methodology involves using a linear regression
algorithm to analyse the processed experiment data and produce power models for
the system. This is another multi-step process in which involves a number of custom
algorithms. Search algorithms have been developed that go through the experiment
data to identify the most optimal set of events to use in the power models, according
to various criteria. This stage is also used to interpret the experiment data to validate
other published models and compare those results against the proposed power models.
A complete breakdown of this stage is available in Chapter 4.3.

33

CHAPTER 4. METHODOLOGY

A comprehensive overview of the three different stages of the methodology including the
internal procedures and data involved are shown in Figure 4.1.

Figure 4.1: Power modelling methodology stages. The systematic methodology developed in
this research involves many steps, grouped into three distinct stages - Data Collection, Data
Processing and Model Generation.

Each stage in the methodology involves many custom control scripts, thoroughly com-
mented in order to enable easy adoption and continuation of the methodology by other
researchers. An overview of the methodology software, obtained using the code analysis tool
cloc [90], is given in Table 4.1.

Table 4.1: Characteristics of the methodology code for each stage.

Stage Language files blank comment code
Data Collection Various 33 1041 1023 3476
Data Processing Bourne Shell 17 551 1099 4134
Model Generation MATLAB 3 70 108 241

34

4.1. DATA COLLECTION

4.1 Data Collection

Data collection consists of 3 key components - system configuration, workload selection and
finally program control. Details about each one are given in the following Subsections.

4.1.1 Experimental Setup

The first operation is to set up the platform for the experiment. It involves updating and
patching the kernel to provide access to the ARM Cortex-A15 and ARM Cortex-A7 PMUs in
order to collect the hardware events as well as downloading the support tools, used in the
methodology for program execution control. This step differs from platform to platform so it
needs to be done manually. cset [91] and cpufrequtils [92] [93]. Downloading and compiling
the workloads - cBench [19] for the single-thread case and PARSEC 3.0 [94] for the multi-thread
case. And last but not least downloading the custom control script from the project github
repository, which will guide the data collection process - MC_XU3.sh [95]. All the developed
project software, excluding the workloads which are already available online, is uploaded
online in order to make setting up new platforms less cumbersome.

A key component in this process is the choice for which type of memory card to host the
OS and experiment software. During the course of the research the eMMC card is compared
against a microSD class 10 memory card. The final methodology uses an eMMC memory card
on the ODROID XU3, which provides a very stable environment. Figure 4.2 shows the platform
variation in runtime, average power, temperature as well as the CPU_CYCLES hardware event
while running the cBench (single-thread) and PARSEC 3.0 (multi-thread) workloads on both
processor types using the same eMMC card as driver. The results clearly indicate that the
eMMC is a much more stable memory card with consistent performance and variation between
experiment runs below 5% for all four markers. The microSD card on the other hand had
sudden spikes of up to 55% and 28% workload runtime variation for the Cortex-A15 and
Cortex-A7 respectively. Details about the direct comparison between the microSD and eMMC
cards are available in Chapter 5, Section 5.6.

4.1.2 Workload Characteristics

A lot of time was spent on choosing a suitable workload to use in the methodology. The
ideal workloads would be exhaustive benchmarks with diverse behaviour in order to capture
different scenarios and long runtime, because of the hard set 0.5s sampling rate on the ODROID
XU3 on-board power sensors.

A few open-source options were tried ranging from simple performance benchmarks like
Dhrystone [96], Whetstone [97], LINPACK [98] to complex test suites like MEVBench [99],
Parboil [100], Rodinia [101] and the benchmarks available through the phoronix-test-suite
[102].

35

CHAPTER 4. METHODOLOGY

(a) cBench on ARM Cortex-A15 (b) cBench on ARM Cortex-A7

(c) PARSEC 3.0 on ARM Cortex-A15 (d) PARSEC 3.0 on ARM Cortex-A7

Figure 4.2: Difference between executions of the two workload types on the ODROID-XU3
board. The data presented is the Average and Maximum Percent Difference between different
executions of the cBench and PARSEC 3.0 workloads for both processor types on the ODROID
XU3 development platform, using the eMMC card as OS driver. The showcased metrics are the
workload Total Runtime, CPU Average Power, CPU Average Temperature and the CPU_CYCLES
hardware event.

Eventually cBench [19] was selected, because it consists of a large set of smaller benchmarks
designed to represent real-life workloads and its long runtime (to ensure enough samples are
collected from the energy monitors). cBench is also single-threaded so it is ideal for developing
a single-thread model, which was believed to be a first and necessary step in this research.

For the multi-thread case PARSEC 3.0 [94] was used, since it is well established in the
research community and also consists of several smaller benchmarks. It is highly configurable
and the number of threads for most of the workloads in the suite can be adjusted. This makes
it ideal for the 8 core development system, since it allows exploration of all the possible
multi-core configurations of the system.

4.1.2.1 cBench

cBench was selected as the single-thread workload for the methodology. Choosing a workload
representative of real-world applications is preferable to using custom microbenchbarks. The
main goal of this work is to generate empirical models, which are prone to overfitting the

36

4.1. DATA COLLECTION

workload they are trained on [58], therefore the models should be trained on workloads that
are as close as possible to real-world applications. cBench has been successfully used by other
researchers as a test and train workload to develop accurate power models [49] [61].

cBench is a collection of 32 benchmarks, split into 7 categories. For the initial results
obtained on the ODROID XU and ARM Versatile Express Motherboard with CoreTile TC2
Daughterboard a partial split detailed in Appendix B.1 is used. The model is trained using the
larger set and then test on a representative of each category.

For the recent results a more balanced split is used, which is listed in Appendix B.2
When tested on the ODROID XU3, out of the 32 benchmarks, two could not successfully run.
consumer_mad would not run compile properly and consumer_lame would cause a buffer
overflow. All the remaining 30 benchmarks are split randomly in half and 1 set is used to train
and 1 to test the model. This split is computed once and then used for the rest of the model
generation and validation steps in order to maintain consistency when comparing the accuracy
of the power models generated and validated using the methodology. Keeping the workload
split the same for all generated models ensures and differences would only occur from the
characteristics of the model, a.k.a. the markers used for prediction (PMU events, physical
information or system state), and not from any fitting bias due to a different selection of the
training benchmarks.

cBench was used [19] as the single-thread workload compiled for the ODROID-XU3 using
gcc with the -O3 flag. The workload power characteristics are presented in Figure 4.3. There
are a total of 18 frequency levels available for the Cortex-A15 and 13 frequency levels for the
Cortex-A7 with 5 available voltage levels, which are shown in 4.3a. Exploring this entire space
for the purposes of power modelling is very challenging. This is overcome by producing an
individual set of coefficients for the PMU event based model for every frequency level. The
result is called a per-frequency model. More details about this type of model are available in
Chapter 5, Subsection 5.2.2. Figure 4.3b highlights that the lowest energy point on the convex
E/F curve is not linearly determined. This complex relationship is also used in Nikov et al [21]
to justify the need for power modelling in modern embedded systems.

4.1.2.2 PARSEC 3.0

PARSEC 3.0 was used [20] as the workload for the multi-thread model generation and valida-
tion. Since the system has 4 CPU cores in each CPU cluster, the execution is explicitly split into
4 categories - 1 core, 2 cores, 3 cores and 4 cores, with each core executing 1 workload thread.
The analysis is done on the combined data from all 4 configurations. The initial assumption
(besides having more detailed control over the system variables) was that having dedicated
models for each configuration (1,2,3 or 4 running cores) would yield greater accuracy, the way
splitting the model for every frequency level did. However that was proven by the experiments
to not be the case and actually using the data from all four categories produces a better model

37

CHAPTER 4. METHODOLOGY

(a) Voltage/Frequency Levels (b) Energy/Frequencty Relationship

Figure 4.3: Characteristics of the cBench workload on the ODROID-XU3 board. The CPU
Frequency and corresponding Voltage Levels for both processor types are presented on the
left Figure 4.3a. The Relationship between total used CPU Energy for each CPU Frequency is
presented on the right Figure 4.3b with a highlight on the lowest energy points.

overall, even when only tested on a single configuration. The details of this investigation with
supporting results are presented in Chapter 6.

Figure 4.4 details the overall characteristics of PARSEC 3.0 on the HARDKERNEL ODROID
XU3. As mentioned previously in Chapter 3, Section 3.3 the ARM Cortex-A15 maximum
frequency is limited from 2.0 GHz to 1.8 GHz in order to avoid thermal throttling from the
Linux kernel. This is illustrated in Figure 4.4a where the frequency and corresponding voltage
levels for the system running the multi-thread workload are given. This still provides sufficient
data points to use in the analysis. The energy usage data if Figure 4.3b is given only for the 4
Core configuration since it has the most dynamic energy profile and is representative of the full
multi-threaded capabilities of the system. It clearly illustrates, that the lowest energy points
are not linearly defined by frequency like in the data from cBench in Figure 4.3b.

Appendix B.3 details the randomised benchmark split used in training and testing the
multi-thread model. The PARSEC 3.0 set also contains some benchmarks from splash2 with
added multi-thread scaling. Only the benchmarks that compiled successfully are used, were
able to scale for all 4 core configurations and were long enough to obtain a sufficient amount
of data points. The final workload consists of 9 suitable benchmarks, with 4 being used for
training and the rest for testing. This is a much more detailed level of exploration than other
multi-thread models which just use workloads that leave the compiler/OS to dynamically
assign the number of threads.

In addition to the custom experiment a modified version of the PARSEC blackscholes
application was used for the collaboration presented in Chapter 7 in which the mathematical
model the research group from the collaboration is validated on the HRDKERNEL ODROID
XU3 development platform using the methodology.

38

4.1. DATA COLLECTION

(a) Voltage/Frequency Levels (b) Energy/Frequencty Relationship

Figure 4.4: Characteristics of the PARSEC 3.0 workload using 4 processing cores on the
ODROID-XU3 board. The CPU Frequency and corresponding Voltage Levels for both processor
types are presented on the left Figure 4.4a. The Relationship between total used CPU Energy for
each CPU Frequency is presented on the right Figure 4.4b with a highlight on the lowest energy
points. For easier illustration, only the data from the extreme case of running a symmetric
4-thread workload on all available cores of each processor type has been presented.

4.1.3 Workload Execution

Several tools in the Linux ecosystem were used to help control the execution of the workflow
and to read the PMU events and on-board power sensors. The two four-core CPU clusters
can be configured separately, which allows many options for the system set-up. This is done
in three steps. First, /sys/devices/ is used to identify and hotplug the processing cores not
required in the experiment. Second, cpufreq-set from the cpufrequntils package is also used to
set the CPU cluster frequency. Finally cset is used to assign the workload application to the
appropriate cores and isolate all the data collection scripts and OS threads on the opposite CPU
cluster. This prevents the collection interfering with the experiment and minimises overhead.
All of this is controlled by the MC_XU3.sh [95] script. A diagram is presented in Figure 4.1

The data collection scripts read the on-board power sensors data and use the Linux perf
tool to communicate with the PMU and collect the events. This is all done in real-time, in
parallel to the workload execution at a 0.5s interval for the HARDKERNEL ODROID XU3
development platform. The interval is imposed by the minimal refresh rate of the power
sensors and since all measurements need to be synchronised. The PMU event collection is also
done at the same interval, despite the fact that the PMU can be sampled much faster.

The final methodology explores the entire set of PMU events available. The number of
events that can be collected in parallel from the PMU is also limited to just 7 for the Cortex-
A15 and 5 for the Cortex-A7 CPU cluster, with 1 of those registers being reserved for the
CPU_CYCLES event. With 67 total events available for the Cortex-A15 and 42 for the Cortex-
A7, this means that multiple runs are required and collections in order to capture all events
for analysis. In order to facilitate data analysis precise timestamps are generated for each
measurement so that they can be concatenated later on.

39

CHAPTER 4. METHODOLOGY

This complicated set-up is necessary in order to minimise experiment interference and
variability. Table 4.2 shows the low overhead of the off-cluster data collection. These mea-
surements are the difference between CPU power when not collecting the data samples and
when collecting the data samples on the unused processing cluster. It can be seen that the
methodology has minimal impact on the measurements, precisely because data collection
is done in a way that does not affect normal workload execution. Measurement overhead
and noise are a large contributor to increasing model error, which is why reducing them is
imperative to generating accurate models.

Table 4.2: Overhead of the data collection stage of the methodology on the ODROID-XU3
board. These results present the Average as well as Maximum Difference of the CPU Power and
workload Total Runtime between execution with PMU event collection enabled and without for
both processor and workload types.

Average Difference Maximum Difference
Single-Thread/Multi-Thread

Total Runtime 0.16%/1.18% 0.12%/0.95% 0.41%/3.10% 0.42%/7.03%
Average Power 0.27%/0.38% 0.40%/0.62% 0.90%/1.30% 1.64%/5.00%
ARM Core Type Cortex-A15 Cortex-A7 Cortex-A15 Cortex-A7

4.2 Data Processing

The second stage of the methodology is probably the most important one. In order to make
the experiment data usable the different sensor and PMU event measurements need to be
synchronized.

4.2.1 Data Synchronization

This is done by utilizing precise timestamps for each measurement, generated during result
collection. A complicated data processing script was developed, which synchronizes the
benchmark execution times with the sensor and PMU event information in one file. It is
available as XU3_results.sh [103]. If only a single set of PMU events has been collected the
synchronized data can already be used for model generation.

4.2.2 Data Concatenation and Analysis

The methodology involves the collection of the full list of available PMU events in order to do
a more thorough analysis. The events themselves cannot be gathered concurrently so require
multiple experiment runs to capture. After collection, they are first synchronized with their
respective sensor and benchmark sample data point using the method in the previous section.
This results in many data files with different timestamps.

40

4.3. MODEL GENERATION

A special concatenation script is used which averages sensor information and presents
all PMU events into one big dataset. This is to enable the event selection machine learning
algorithms to traverse the data quicker. The script is called XU3_merge_events.sh [103]. A
pseudocode version of the data concatenation algorithm is available in Appendix C.1.

One additional step is also performed - namely removing any events which have high
variability between platform runs and any events that are very specific and do not get triggered
by the workload. This ensures that the events list is consistent and stable, which improves
model stability as well.

4.3 Model Generation

After collection and processing have been completed by the previous steps in the methodology,
the next step can occur, which is generating the power models. This step requires the synchro-
nized data from the CPU power and PMU event samples as well as the full concatenated list
of collected events. The analysed data consists of one big datafile, which holds all the samples
(one for each line in the file) at the specified sampling interval. The model generation step uses
this data and performs two distinct operations - mathematical derivation of the model using
the octave environment and the OLS procedure and automatic model event selection, which
searches the full list of collected PMU events and identifies the most optimal set to be used in
the model. Both of these steps are implemented via a custom script.

4.3.1 Offline Analysis Using octave

After data collection and processing the mathematical analysis is performed on the results
off-line on a supporting machine. The workload is split into a train and test set and compute
the model using octave.

Ordinary Least Squares, a well-know linear regression algorithm, is used to identify the
events that best approximate average power from the train set. The mathematical expression is
shown in equation 4.1.

α= (X T X)−1X T y= (
n∑

i=1
xixT

i)−1(
n∑

i=1
xi yi) (4.1)

Power is used as the dependent variable y in the above equation, also known as regressand.
The events are expressed as the X vector of independent variables, a.k.a. regressors. The OLS
method outputs a vector α, which holds coefficients extracted from the activity vectors. Then
the equation 4.2 is used to estimate power usage using a new set of events.

PCPU =α0 +α1 × event1 +α2 × event2 + . . .+αn × eventn (4.2)

The accuracy of the modelled equation is evaluated by using data from the benchmark
test set with a new set of power values and events and measure the percent difference (error)

41

CHAPTER 4. METHODOLOGY

between the measured power and the estimated power by plugging the new events in the
equation. Other metrics like Root Mean Squared were explored, but they can be very sensitive
to outliers.

In general, data modelling approaches like linear regression are quite dependent on the
inputs and equations used. If the model is too simple it might not give accurate predictions,
because it does not use a sufficient number of characteristics (events/regressors) to fit the data
properly. On the other hand a too complicated model, using many events, can make it hard
to compute in real-time and can be prone to overfitting the training data and if the training
data is not broad enough it might perform poorly on future types of work that have not been
included in the training data. There is a fine balance between simplicity/real-time usability
and good performance, but there is a lot of evidence that linear regression models can be used
in power optimization techniques in embedded systems and produce accurate models [49],
[59], [51].

In the methodology octave is used just as a computational call. On top of it lies the
octave_makemodel.sh script which controls how the data is split and which events are used in
the file. That script is used to generate the per-frequency, as well as intra and inter-core models
by modifying the test and train set before the call to octave. Further information about the
different types of models that are generated can be found in Chapters 5, 6 and 7. Reference
pseudocode implementations of the per-frequency and intra/inter-core model generation
scripts can be found in Appendix C.2 and C.6.

The main point to make here is how flexible the methodology is. Any point in time new
model generation algorithms can be implemented and even the octave call can be replaced for
something else.

4.3.2 Event Selection

In addition to performing the per-frequency model generation, octave_makemodel.sh is modi-
fied with custom intelligent search algorithm scripts to identify the best power models from the
collected events. The impact of this machine learning approach to develop the custom power
models is explored in Section 5.5. Three different search algorithms were developed - bottom-
up, top-down and exhaustive. As their names suggest they traverse the PMU events search
tree in different ways. Pseudocode examples of the three algorithms are found in Appendix
C.3, C.4 and C.5. 1

In addition to implementing several search algorithms, multiple options for model opti-
misation criteria are also integrated. Instead of average relative error, event cross-correlation
or error standard deviation can be minimised. The octave_makemodel.sh is flexible and can
easily be configured to add even more functionality.

1The reason behind including pseudocode versions of the algorithms is because the actual code takes too much
space. It can always be seen on-line on the github code repository [103] [95].

42

4.3. MODEL GENERATION

4.3.3 Model Accuracy Metrics

Table 4.3 shows the target model error for the single-thread workload on the HARDKERNEL
ODROID XU3 development platform. The calculated values are the average power difference
between two adjacent frequency levels for both processor types while running cBench. The Up
value is the difference between a level and the next higher one, for example going from 1.4 GHz
to 1.5 GHz, and the Down value is the difference between the level and the next level lower, for
example 0.8GHz to 0.7GHz. The table gives the average of these differences between all two
adjacent levels. These metrics represent the required model error for the per-frequency level
models to predict the power on the level they are generated for. If the model error is higher
than the Up or Down percent difference then the model can predict power values attributed to
its adjacent frequency levels and if used as a reference by an EM policy can needlessly trigger
a CPU frequency scaling to a less optimal level. The average power difference values provide
the tightest constraints that allow the model to work accurately on all of them. Therefore the
model error for the ARM Cortex-A15 needs to be lower than 8.69% and for the ARM Cortex-A7
- 13.55%. Identifying the target error is a necessary step in identifying any problems with the
methodology and verifying that it can produce accurate models. Due to the limited number of
PMU events that can be use and the nature of the automatic search algorithms, it is expected
to never have the absolute ideal model. However, a satisfactory model performance can be
guaranteed if the error is below the minimum difference between the energy levels, so the
model may be usable as a guide to average power at every level.

Table 4.3: Target error for the single-thread per-frequency power models fitted on the
ODROID-XU3 board. The data presents the CPU Average Power Difference between adjacent
energy levels while running cBench for both processor types on the ODROID XU3 develop-
ment platform using the eMMC card as OS driver. Two indicators are used - from a level to the
next higher (up), or from a level to the previous lower (down). The average of these differences
between all neighbouring levels represents the model target accuracy.

ARM Core Type Average Power Difference Up Average Power Difference Down
Cortex-A15 9.51% 8.69%
Cortex-A7 15.68% 13.55%

The target model error for the multi-threaded workload on the ODROID XU3 platform are
presented in Table 4.4. They are computed using the same technique that calculates the target
error for the single-threaded execution by obtaining the average power difference between
adjacent energy levels. However for this case the data from running PARSEC 3.0 on all four
CPU core configurations (1,2,3 and 4 cores under load) is used. The target model error for the
multi-threaded scenario is less than 7.57% for the ARM Cortex-A15 and less than 7.04% for
the ARM Cortex-A7. The accuracy needs to be even greater than what the single-thread case
requires due to the lower energy difference between levels while executing the multi-thread
workload. The lower error requirement is a difficult target, that the generated per-frequency

43

CHAPTER 4. METHODOLOGY

models for the multi-threaded workload are unable to meet. The cause of this and possible
solutions to improving the accuracy of regression-based models and meeting this target are
presented in Chapter 6.

Table 4.4: Target error for the multi-thread per-frequency power models fitted on the
ODROID-XU3 board. The data presents the CPU Average Power Difference between adja-
cent energy levels while running PARSEC 3.0 for both processor types on the ODROID XU3
development platform using the eMMC card as OS driver. Two indicators are used - from a
level to the next higher (up), or from a level to the previous lower (down). The average of these
differences between all neighbouring levels across all 4 system configurations for the workload
(1,2,3 or 4 cores) represents the model target accuracy.

ARM Core Type Average Power Difference Up Average Power Difference Down
Cortex-A15 7.57% 7.04%
Cortex-A7 14.81% 12.9%

4.3.4 Model Validation and Comparison

Figure 4.5: Model generation and validation steps. The model generation and validation
stage of the systematic methodology involves two overlapping steps. Step 1 generates the
automatic model from the experiment data. Step 2 revalidates this model on the hardware and
generates the final collected model.

The final stage of model generation is validation, which is a two step process. Firstly an
intermediate model is computed using the full PMU events list. This model is called automatic
and it uses the optimal subset of events that was identified. Afterwards this optimal of events is
collected on the hardware on its own by repeating the experiment. This is done to eliminate any
approximations that can affect the model accuracy, caused by the data processing and event
concatenation on the initial data collection. The second validated model is called collected. In
simple terms the model is first calculated from a bigger list of events and then the optimal list
of events is collected on its own and validated again. This often results in higher error for the
collected model due to the lack of data averaging introduced by the PMU event concatenation

44

4.4. SUMMARY

part of the data analysis stage in the methodology. In addition to these steps the finalized
collected model can be compared against other published models to further validate the
methodology. An illustration of the steps to generate the automatic and collected models is
given in Figure 4.5. Validating other published models is done by performing Step 2 with the
automatic events list at the start of the stage, replaced by the events of the model under test. If
the published model was developed on another architecture its events need to be translated
for the ARM big.LITTLE ISA. This requires a good understanding of both architectures and is
done manually by the researcher.

4.4 Summary

The developed systematic model generation methodology is thoroughly described. Great
details are given about each of the three stages.

The data collection process is explained with an emphasis on the experiment set-up proce-
dure and the characteristics for the workloads. Details and examples are also given about the
eMMC memory used to host the OS as well as the methodology overhead and the development
platform power and performance variation between experiment iterations.

The data processing stage is briefly described, with a quick outline of the scripts used to
analyse and prepare the experiment data for model generation.

Finally the techniques used to compute the regression-based models and calculate the
model error are described. A method for identifying the model performance targets is pre-
sented. At the end the two steps involved in generating optimal models from the list of PMU
events are detailed. A description of how to use the methodology to validate other published
work is also presented.

45

C
H

A
P

T
E

R

5
SINGLE-THREAD MODELS

This chapter describes the single-thread scenario of the power model generation and
validation using the developed methodology. The methodology goes though several
different stages of development, producing better and better power models along the

way. All the generated models during the methodology evolution and all the key insights
gained that enabled progression are included.

Section 5.1 introduces the initial stages of the methodology and the first power models,
developed for the HARDKERNEL ODROID XU+E and the ARM Versatile Express Mother-
board with CoreTile TC2 Daughterboard development platforms. It includes some insights
into environmental factors, such as SoC temperature, with regards to power consumption as
well as results, comparing the performance and energy consumption of the ARM Cortex-A15
and ARM Cortex-A7 processors.

Afterwards, the first models developed for the ODROID XU3 board are described in Section
5.2. These results include description of the per-frequency level model generation techniques
and comparison against related work.

The next Section 5.4 describes the efforts in analysing the model reproducibility on multiple
ODROID XU3 boards. Section 5.5 details the efforts to improve the model accuracy using an
automatic search algorithm to identify the optimal list of PMU events for power modelling.
This section also details the results of repeating the board variability experiment with the new
models.

The ultimate outcome of that analysis was that the memory system used to build the
models, namely the eMMC card used with the first ODROID XU3 board, was vastly different
than the mSD cards used in the variability experiment. Chapter 5.6 presents the results of the
detailed comparison analysis between the eMMC card and mSD card.

46

5.1. INITIAL RESULTS

Sections 5.7 and 5.8 detail the final stages of the methodology and compare the final
single-thread power models for both processor types to other published work.

5.1 Initial Results

The initial methodology involved collecting a limited set of PMU events for the frequencies at
the SoC extreme on the target board. This means that only the events for the highest frequency
available for the Cortex-A15 and the lowest available for the Cortex-A7 were collected. The
initial justification was that if the model could correctly capture system behaviour in the
extreme scenarios it would work on all other. This assumption has been proven wrong and
has been corrected in later iterations of the methodology. Still these models serve as a good
starting point to the analysis.

This section describes the models obtained for both ODROID XU+E 3.1 and ARM Versatile
Express Motherboard with CoreTile TC2 Daughterboard 3.2. cBench was used for the method-
ology workload and each experiment was ran 5 times to obtain a good average. The PMU
events that were collected are the standard ones visible through the perf aliases, namely cycles,
instructions, cache references(CR) and cache misses(CM). At this stage the script calls to perf to
select events via their RAW identifiers have not been developed. For the power model analysis
combinations of the events are manually combined and tested and the corresponding model
error is reported. Initially the model was trained and tested on the full cBench set and the best
performing events are then trained and tested on the partial set in Appendix B.1.

5.1.1 ODROID XU+E Power Models

5.1.1.1 ARM Cortex-A15

Figure 5.1, presents the average measured CPU power consumption and total energy usage by
each benchmark category in the cBench set averaged over the 5 runs of the experiment. The
average system power and energy usage is also measured. The values are obtained from the
on-board sensors. The workloads are quite varied, which ensures the model does not overfit
on a specific type of workload and lose its flexibility. For every run the 4 events mentioned
previously are collected and the different models are built as explained earlier.

Appendix D.1 shows the regressand coefficients for the different models and table 5.1 shows
the resulting Predicted Power Standard Deviation, Average Root Mean Squared Difference
between prediction and actual measurements and the Average Dynamic Contribution, which
shows what percentage of the predicted power consists of the dynamic events by subtracting
the constant part from the prediction.

Another indicator for a good model is the Standard Deviation of Predicted Power. The
measured cBench Power standard deviation is 14% so ideally the generated model should
be able to capture the full range and get as close to that as possible. The Average Dynamic

47

CHAPTER 5. SINGLE-THREAD MODELS

Figure 5.1: Characteristics of cBench running on ARM Cortex-A15 on the ODROID XU+E
board. The figure presents the CPU as well as the System Average Power and Total Energy Used
for each group of benchmarks in the cBench suite while running on the ARM Cortex-A15
processor at 1.6GHz on the ODROID XU+E development platform.

Table 5.1: Performance of the single-thread power models for ARM Cortex-A15 on the
ODROID XU+E board. The presented data uses three different metrics to illustrate the ac-
curacy of the various models generated from combinations of the four accessible hardware
events - CPU Cycles, Instructions, Cache References(CR) and Cache Misses(CM) as well as Cycles-
per-Instruction(CPI) and Instructions-per-Cycle(IPC).

Model Type
Predicted Power

Standart Deviation
Average RMS

Difference
Average Dynamic

Contribution
Full Cycles 5,20% 11,60% -6,43%
Full Instructions 3,58% 12,31% -8,03%
Full CPI 3,48% 12,31% -5,74%
Full IPC 6,06% 11,42% 15,73%
Full CR 5,58% 11,21% -8,71%
Full CM 8,89% 9,31% -8,15%
Full IPC,CR,CM 9,11% 8,92% -2,71%
Partial IPC,CR,CM 5,49% 4,36% 2,70%

Contribution should be positive, which means the dynamic events in the system are correctly
modelled. If it is negative it means a greater emphasis is placed on the static power, so some
of the dynamic power costs are masked and the model can be prone to overfitting the data.
However the main task is to minimise the Average RMS Difference, since that is the main
indicator that the model fits the data correctly.

For the Cortex-A15 the top regressands based on models built and tested on the full
benchmark set are ICP,Cache References and Cache Misses, with Cache Misses achieving the
best single-event performance with 9,31% difference. This is not surprising since cache events
are shown to contribute to power greatly so the number of such events should play a large role

48

5.1. INITIAL RESULTS

in determining the power consumption of the task. However the best performing model using
IPC,CR and CM as events achieves a rather poor 9% difference, when it should ideally be close
0%. Also the Power Deviation is 9% instead of the 14%. This means the model cannot accurately
capture all of the dynamic range of the test suite and more events/increased complexity should
be considered. However when built on the partial set and tested on the smaller number of
benchmarks it actually achieves better results getting as close as 4.5% and actually having a
positive dynamic contribution component. This indicated on one hand that cBench includes a
wide range of workloads and their specific choice can affect the model greatly and including all
benchmarks to train actually introduces greater variability of the model. The simple model is
quite flexible, but it seems to be under fitted if such small variations in the training set. Looking
at specific benchmarks the model shows poor performance on bzip2d with 20% difference and
almost all of the consumer benchmarks getting on average a 25% error for that set which is
huge. Further investigation is needed in order to find suitable events which can help capture
the power consumption contributions of those specific workloads. That is why the testing is
done on the first benchmark of every set. If the whole consumer set and bzip2d are included in
testing the reported model performance will be greatly reduced.

5.1.1.2 ARM Cortex-A7

The experiments were repeated for the Cortex-A7. The LITTLE core has a much smaller
dynamic power range, because it is low power and the workload is ran on the smallest possible
CPU frequency, so it is expected to use much less energy than the big core.

Figure 5.2: Characteristics of cBench running on ARM Cortex-A7 on the ODROID XU+E
board. The figure presents the CPU as well as the System Average Power and Total Energy
Used for each group of benchmarks in the cBench suite while running on the ARM Cortex-A7
processor at 0.5GHz on the ODROID XU+E development platform.

The Cortex-A7 completes cBench on average about 2.5 times slower that the Cortex-A15,
however the total energy consumption is on average 5-6 times lower than the Cortex-A15,

49

CHAPTER 5. SINGLE-THREAD MODELS

which is quite significant. The Cortex-A7 is approximately about double the efficiency of
the Cortex-A15, which makes it much suitable for parallel mobile systems than the Cortex-
A15, since more performance per core is achieved. However the mobile software stack is
still predominantly single-threaded, so a good sequential performance that the Cortex-A15
provides, is needed to meet heavy consumer demands. As software matures it is predicted that
more systems will emerge, where the majority of cores are cost-effective ones like Cortex-A7,
and they will rely on parallelisation to achieve high performance.

Table 5.2: Performance of the single-thread power models for ARM Cortex-A7 on the
ODROID XU+E board. The presented data uses three different metrics to illustrate the ac-
curacy of the various models generated from combinations of the four accessible hardware
events - CPU Cycles, Instructions, Cache References(CR) and Cache Misses(CM) as well as Cycles-
per-Instruction(CPI) and Instructions-per-Cycle(IPC).

Model Type
Predicted Power

Standart Deviation
Average RMS

Difference
Average Dynamic

Contribution
Full Cycles 2,06% 4,66% -3,52%
Full Instructions 1,08% 4,99% -2,15%
Full CPI 1,70% 4,85% -5,84%
Full IPC 3,03% 5,15% 7,49%
Full CR 1,41% 4,80% -2,08%
Full CM 3,39% 4,25% -2,93%
Full C,CR,CM 3,57% 4,04% -3,31%
Full C,I,CR,CM 3,57% 4,04% -3,18%
Full CPI,CR,CM 3,41% 4,23% -2,86%
Partial C,CR,CM 3,51% 3,76% -0,64%

Compared to the Cortex-A15 Power Models, the Cortex-A7 ones exhibit some different
characteristics. For example the Power Standard Deviation of cBench is only 6,32% which is
a lot smaller than the Cortex-A15, mainly because the core power is much lower and also it
has low-power components (short pipeline, smaller cache size) with which the static power
consumption is a lot more prevalent. However the best performing model only achieves 3.57%
standard deviation of power, which is even worse that the Cortex-A15 (A7 is 50% off the
measured Power Standard Deviation). Another very interesting observation is that this time
just Cycles on its own produces a better model than Instructions, CPI or ICP, however Cache
Misses is still produces the best single event power model. Overall the best model seems to
be Cycles, Cache References and Cache Misses and the same relationship between the full
set model and the partial set model is present as on the ARM Cortex-A15 (partial is better).
Adding the Instructions event to the model seems to make no improvement. The model again
struggles with predicting the consumer set of benchmarks, but this Cortex-A7 model achieves
about 10% average Power difference. Some further investigation with varying the frequency
should be done, since from comparing the Cortex-A15 and Cortex-A7 models initial conclusion

50

5.1. INITIAL RESULTS

is that with increasing the frequency CPI and ICP show increasing contribution to the power
consumption compared to just Cycles and Instructions.

5.1.2 ARM Versatile Express Motherboard with CoreTile TC2 Daughterboard

The same methodology was replicated on the other board provided by the industrial sponsor.

5.1.2.1 Cortex-A15

The ARM Cortex-A15 processor on the ARM Versatile Express Motherboard with CoreTile
TC2 Daughterboard is expected to be considerably slower and use more energy than the
ODROID XU+E one since this platform was produced using an older manufacturing process.
The two systems also have different memory systems, so memory bound applications could
also potentially differ greatly. The following figure shows average CPU power for each set of
microbenchmarks in cBench and the average PCU energy. System-level information was not
included, since the ARM Versatile Express Motherboard with CoreTile TC2 Daughterboard
has a lot of peripherals on the motherboard, which are not present in a standard SoC and
introduce quite a large system energy. Also the chip average power consumption can be lower
due to the fact that this board runs slower than the ODROID XU+E, but overall due to the
inferior manufacturing process total energy usage should still be relatively higher. Also the
ARM Versatile Express Motherboard with CoreTile TC2 Daughterboard runs a much simpler
OS than the other boards, which means less overhead and this can affect the average system
power and energy consumption.

Figure 5.3: Characteristics of cBench running on ARM Cortex-A15 on the Versatile Express
Motherboard with CoreTile TC2 Daughterboard platform. The figure presents the CPU
Average Power and Energy for each group of benchmarks in the cBench suite while running on
the ARM Cortex-A15 processor at 1.2GHz on the Versatile Express Motherboard with CoreTile
TC2 Daughterboard development platform.

The graph shows that most of the expectations were generally met. Despite the smaller OS
the new platform has lower power usage but increased energy consumption. However it is

51

CHAPTER 5. SINGLE-THREAD MODELS

surprising to see that the consumer subset of benchmarks use quite a lot more energy compared
to the ODROID XU+E. This can be explained by the fact that they do image processing and
use large images as inputs, so because of the different (slower) memory structure on the ARM
Versatile Express Motherboard with CoreTile TC2 Daughterboard, the CPU ends up waiting
for a much longer time for data coming back and forth from memory.

The next tables represent the models built from the collected events, in the same way
this was done on the ODROID XU+E. The same events were intentionally collected, so as to
compare the systems as objectively as possible.

Table 5.3: Performance of the single-thread power models for ARM Cortex-A15 on the Versa-
tile Express Motherboard with CoreTile TC2 Daughterboard platform. The presented data
uses three different metrics to illustrate the accuracy of the various models generated from com-
binations of the four accessible hardware events - CPU Cycles, Instructions, Cache References(CR)
and Cache Misses(CM) as well as Cycles-per-Instruction(CPI) and Instructions-per-Cycle(IPC).

Model Type
Predicted Power

Standart Deviation
Average RMS

Difference
Average Dynamic

Contribution
Full Cycles 4,85% 20,00% -6,96%
Full Instructions 3,00% 19,81% -6,81%
Full CPI 3,11% 20,72% -5,81%
Full IPC 5,99% 19,89% 17,02%
Full CR 9,85% 17,64% -20,47%
Full CM 11,44% 16,88% -11,17%
Full I,CR,CM 12,34% 15,57% -12,00%
Full IPC,CR,CM 12,34% 16,90% -18,42%
Partial I,CR,CM 16,79% 10,87% -3,49%

The Cache Misses is again the best fitting event on its own. However this time Instructions
is a better regressand than Cycles, CPI and ICP. The best model, consisting of Instructions,
Cache References and Cache Misses fits the full model rather poorly at 16%. However it is
to note that this platform shows a larger variance in measured power at 21.67% and the full
model only predicts a 12.24% standard deviation. It also has quite a large negative Dynamic
Contribution at -12%. These differences occur because, even though the two boards have
the same CPU architecture, they have different chip topologies and manufacturing processes
which influence the power consumption drastically. In the case of the second board the same
events do not produce the same results, which means that in order to model a platform
correctly an individual model needs to be computed every time. The partial model again has
better performance for partly the same reasons as it did for the ODROID XU+E board, but
this time the full model has difficulty not just with the consumer set of benchmarks (average
30% difference), but also with automotive, with automotive_susan_c and automotie_susan_e
having 56% and 49% prediction error respectively.

The next experiment captures the Ubuntu Developer OS overhead on the SoC by disabling

52

5.1. INITIAL RESULTS

the Cortex-A7 cluster and focusing on the Cortex-A15. Then the average power was measured
by collecting the energy accumulated during a 12 hour sleep and dividing that by the total
time. During this time the Cortex-A15 cluster average idle power is measured to be 0.05 W
which is negligible. Interestingly the powered-down Cortex-A7 cluster can be seen to having
0.002 W average power, which can be attributed to leakage. Overall, the background energy
consumption is very minimal so the choice for a minimal OS for the experiments was justified.

The next experiment shows the average overhead of event collection, measured by running
the full cBench set without events and registering the difference in power and energy mea-
surements from the runs with event collection. The CPU shows a 5,62% difference in power
consumption, which means event collection still has a small overhead on the ARM Versatile
Express Motherboard with CoreTile TC2 Daughterboard and this needs to be factored in when
trying to develop a dynamic power optimisation algorithm that uses event collection.

However the overhead is still relatively small and this type of model, base on hardware
events is suitable for on-the-fly computation, at least in terms of collecting the variables to
plug into the equation (there might be additional costs with calculating the models from the
events) as long as the achieved power reduction is greater than 5%.

5.1.2.2 Cortex-A7

Reproducing the experiments on the Cortex-A7, should show the same specificities for the
LITTLE while having similar level of the difference between the ARM Versatile Express
Motherboard with CoreTile TC2 Daughterboard and ODROID XU+E implementation as
observed in the Cortex-A15 results above.

Figure 5.4: Characteristics of cBench running on ARM Cortex-A7 on the Versatile Express
Motherboard with CoreTile TC2 Daughterboard platform. The figure presents the CPU
Average Power and Energy for each group of benchmarks in the cBench suite while running
on the ARM Cortex-A7 processor at 0.175GHz on the Versatile Express Motherboard with
CoreTile TC2 Daughterboard development platform.

The ARM Cortex-A7 on the CoreTile TC2 Daughterboard is again significantly more

53

CHAPTER 5. SINGLE-THREAD MODELS

power-hungry, despite running at an even lower frequency. The following table shows the
performance of the computed power models. All of them compared should have a better fit
compared to the ones for the ARM Cortex-A15, the same way it was on the ODROID XU+E.

Table 5.4: Performance of the single-thread power models for ARM Cortex-A7 on the Versa-
tile Express Motherboard with CoreTile TC2 Daughterboard platform. The presented data
uses three different metrics to illustrate the accuracy of the various models generated from com-
binations of the four accessible hardware events - CPU Cycles, Instructions, Cache References(CR)
and Cache Misses(CM) as well as Cycles-per-Instruction(CPI) and Instructions-per-Cycle(IPC).

Model Type
Predicted Power

Standart Deviation
Average RMS

Difference
Average Dynamic

Contribution
Full Cycles 0,85% 3,80% -1,60%
Full Instructions 0,47% 3,80% -1,06%
Full CPI 0,55% 3,90% -1,91%
Full IPC 1,05% 3,78% 3,88%
Full CR 1,37% 3,65% -2,60%
Full CM 2,17% 3,52% -1,83%
Full IPC,CR,CM 2,19% 3,54% -2,55%
Full CR,CM 2,19% 3,53% -2,33%
Partial IPC,CR,CM 1,07% 2,43% -4,42%
Partial CM 0,96% 1,97% -0,58%

It is very interesting to see that just Cache Misses alone achieves the best fit with only 3.52%
difference for the full set and 1.97% for the partial model. However the actual system measured
Power Standard Deviation is 5.44% so the model still overestimates the static component and
cannot capture all the dynamic contributions. It still has negative coefficient for the event as
well as -0.6% dynamic contribution. However it is still reassuring that Cache Misses proves
to be an important contributor to the power consumption for both development platforms.
Similarly to the Cortex-A15 model the full set best fit model still struggles with consumer
benchmarks as well as automotive and bzip2e.

The next set of experiments again deals with the OS and event collection overhead. which
should also be quite low, like on the Cortex-A15. The Cortex-A7 cluster average power is
estimated to be 0,008(W) and the Cortex-A15 leakage power is measured as 0,003 (W). The
OS overhead is minuscule when running on the Cortex-A7 and is quite close to the static
Cortex-A15 leakage consumption. The conclusion is that the model greatly overestimates the
static power consumption of both CPUs and the dynamic component should be significantly
more prevalent. This is due to the poor choice of regressors, so other combinations of events
should be explored. Also this might be due to the varied nature of the workload. Maybe a
unified power model is not sufficient and separate workload-specific models need to be built.
A scheduling algorithm using multiple models needs to have the ability to choose the best one
depending on the task at runtime, which will increase the complexity and compute overhead

54

5.1. INITIAL RESULTS

so this trade-off needs to be evaluated. Next the overhead of event collection is measured
as an average of 6.47%, which is close to the Cortex-A15 event collection overheads on the
ARM Versatile Express Motherboard with CoreTile TC2 Daughterboard, which means that
Cortex-A7 models based on events can also be used in real time as long as the power save is
more than 7%.

5.1.2.3 Environmental Effects on Models

The next set of experiments again tried to evaluate the environmental effects on the power
consumption of the ARM Versatile Express Motherboard with CoreTile TC2 Daughterboard
platform. The board does not have a huge heatsink on top of the SoC, so it was expected to
show a greater difference that the results obtained on the ODROID XU+E. The experiment was
done without event collection, because they are not needed for just thermal analysis.

Figure 5.5: Effects of the on-board cooling unit on the ARM Versatile Express Motherboard
with CoreTile TC2 Daughterboard platform for ARM Cortex-A15. The data presents the
Root Mean Square(RMS) Difference in CPU Power and Energy between switching on and off
the on-board cooling unit for each group of benchmarks in the cBench suite while running
on the ARM Cortex-A15 processor on the Versatile Express Motherboard with CoreTile TC2
Daughterboard development platform.

It is evident that there is quite a big difference. The CPU temperature under normal
conditions is around 20C, while with the fan off it reached a steady 40C, almost double and this
affected the power usage of the system greatly. Even though this second platform has an older
manufacturing technology, this trend should also be observable in commercially available
SoCs (which have no fans like dev boards do), which means that temperature should definitely
be considered when building model which can potentially be used in consumer systems.

The next experiment has the similar idea, but this time a single benchmark (consumer_jpeg_c)

55

CHAPTER 5. SINGLE-THREAD MODELS

was ran continuously for 50 runs then turning the fan off and running for another 50 runs as
described earlier. The idea is to capture a trend.

Figure 5.6: Effects of increasing temperature over time on the ARM Versatile Express
Motherboard with CoreTile TC2 Daughterboard platform for ARM Cortex-A15. The data
presents the CPU Average Temperature and Power while repeatedly running the consumer_jpeg_c
benchmark from the cBench suite on the ARM Cortex-A15 processor on the Versatile Express
Motherboard with CoreTile TC2 Daughterboard development platform with on-board cooling
switched on.

Figure 5.7: Effects of the on-board cooling unit on the ARM Versatile Express Motherboard
with CoreTile TC2 Daughterboard platform for ARM Cortex-A7. The data presents the Root
Mean Square(RMS) Difference in CPU Power and Energy between switching on and off the on-
board cooling unit for each group of benchmarks in the cBench suite while running on the ARM
Cortex-A7 processor on the Versatile Express Motherboard with CoreTile TC2 Daughterboard
development platform.

It is evident that the SoC got hot too quickly by the immediate jump in temperature. It
stops rising around 28C and does not get as hot as the full cBench run. This experiment
should be repeated with a more CPU bound benchmark, which does not allow the CPU to
cool down while waiting for data from memory. The current measurements still showcase that
temperature plays a huge role in power consumption, 32% increase in temperature results in
30% increase in power consumption which indicates a high correlation. The first experiment

56

5.1. INITIAL RESULTS

was also repeated for the Cortex-A7 and the following plot shows the relative difference in
power consumption.

Again a significant increase in energy consumption is seen, however the SoC did not
go over 38C, so it was a bit cooler that the ARM Cortex-A15 run. This is reflected in the
percentage differences, with them being lower than ones measured on the Cortex-A15. The
same reasoning that the Cortex-A7 can use the Cortex-A15 area on the SoC to dissipate more
heat can be applied to justify the lower relative increase in power consumption.

5.1.3 Platform Comparison between ARM Versatile Express Motherboard with
CoreTile TC2 Daughterboard and ODROID XU+E

The final results that are presented are from comparing the events between the ODROID XU+E
and ARM Versatile Express Motherboard with CoreTile TC2 Daughterboard platforms. This is
done in order to see how, in spite of the fact that the CPUs have the same architecture and run
the same workload, the different SoC configurations and manufacturing technologies affect
power consumption. A similar number of architecturally retired instructions on both platform
is expected, with a difference in the other events due to differences in the cache sizes and
memory speed for the different SoC topologies.

5.1.3.1 Cortex-A15

Figure 5.8: Difference between single-thread workload executions on the ARM Versatile
Express Motherboard with CoreTile TC2 Daughterboard platform and the ODROID XU+E
board for ARM Cortex-A15. The data presented is the Average Root Mean Square(RMS) Differ-
ence of the CPU Power, Energy, Cycles, Instructions, Cache References and Cache Misses between the
cBench workload executions for ARM Cortex-A15 processor at maximum available frequency
on both development platforms.

57

CHAPTER 5. SINGLE-THREAD MODELS

Observing the Cortex-A15 data shows that even the instruction count is different, which is
probably due to a slight difference in the compilers for both systems, since the pre-installed
GCC compiler was used for the respective OSes installed. Other than that the second platform,
the ARM Versatile Express Motherboard with CoreTile TC2 Daughterboard, has much higher
power consumption and overall energy usage, which is expected and seen from previous
results. There are relatively minor differences in the events, but a big difference in energy
consumption in automotive and consumer, which are benchmark sets that have big data file
inputs, so this is mainly due to difference in memory speed.

5.1.3.2 Cortex-A7

Figure 5.9 shows a comparison between the Cortex-A7s on the two boards as well as the
Cortex-A15 and Cortex-A7 on TC2, the same way it was done for the ODROID XU+E.

Figure 5.9: Difference between single-thread workload executions on the ARM Versatile
Express Motherboard with CoreTile TC2 Daughterboard platform and the ODROID XU+E
board for ARM Cortex-A7. The data presented is the Average Root Mean Square(RMS) Differ-
ence of the CPU Power, Energy, Cycles, Instructions, Cache References and Cache Misses between the
cBench workload executions for ARM Cortex-A7 processor at minimum available frequency
on both development platforms.

The data shows similar differences as the ones between the ARM Cortex-A15s. However
total system energy usage is much greater, because the ARM Versatile Express Motherboard

58

5.1. INITIAL RESULTS

with CoreTile TC2 Daughterboard Cortex-A7 ran at 1/3 of the frequency of the ODROID XU+E
Cortex-A7 and since the Cortex-A7 has a minimal voltage level to operate this could be due to a
particularly unfavourable DVFS configuration. There is still a much larger difference in power
consumption than the difference in frequency so this still indicates how manufacturing process
and SoC topology affect the power consumption of CPU even with the same architecture.

5.1.3.3 Cortex-A15 against Cortex-A7

Figures 5.10 and 5.11 show the difference between the Cortex-A7 and Cortex-A15 events
on the ODROID XU+E and the ARM Versatile Express Motherboard with CoreTile TC2
Daughterboard, just to highlight the heterogeneous side of the systems. The Cortex-A7 has
a much smaller cache size so resulting in more Cache Misses and more memory accesses. In
terms of instructions there should be no difference since the compiled workload is unchanged
and the same number of them should be architecturally retired by both CPUs, since they both
run the same binaries. Due to that the same number of Cache References are also expected. The
CPU cycles are also expected to greatly vary between the two CPUs since the ARM Cortex-A15
is superscalar out-of-order so it should complete CPU bound tasks with significantly less
cycles, compared to the in-order ARM Cortex-A7.

Figure 5.10: Difference between single-thread workload executions on ARM Cortex-A15
and ARM Cortex-A7 on the ODROID XU+E board. The data presented is the Average Root
Mean Square(RMS) Difference of the CPU Cycles, Instructions, Cache References and Cache Misses
between the cBench workload executions on ARM Cortex-A15 processor at 1.6GHz and ARM
Cortex-A7 processor at 0.5GHz on the ODROID XU+E development platform.

The presented data highlights the different focus of each CPU and should not surprise
anyone. These differences show the opportunities for optimising Core task allocation, since

59

CHAPTER 5. SINGLE-THREAD MODELS

the Cortex-A7 is not just a throttled down Cortex-A15, but also has specific strengths on its
own and can be used as a valuable resource for power management.

Figure 5.11: Difference between single-thread workload executions on ARM Cortex-A15
and ARM Cortex-A7 on the ARM Versatile Express Motherboard with CoreTile TC2
Daughterboard platform. The data presented is the Average Root Mean Square(RMS) Dif-
ference of the CPU Cycles, Instructions, Cache References and Cache Misses between the cBench
workload executions on ARM Cortex-A15 processor at 1.2GHz and ARM Cortex-A7 processor
at 0.175GHz on the ARM Versatile Express Motherboard with CoreTile TC2 Daughterboard
development platform.

For the ARM Versatile Express Motherboard with CoreTile TC2 Daughterboard, a similar
overview to the ODROID XU+E one is presented, where instructions and Cache References
remain similar with greater differences between cache misses and cycles. It is evident that that
even though both development boards have very different energy consumptions at least in
terms of relative trends the two behave quite similarly, meaning that it possible to deduce
generalized power consumption characteristics just by analysing the CPU architecture and
at least the general trends for the big.LITTLE architecture remain the same regardless of
implementation. This means it is possible to predict how much relative power can be saved
on a given system if the architecture is know, but in order to estimate the absolute power
consumption SoC topology, manufacturing process and environmental factors needs to be
taken into consideration.

5.2 Extending the model for the ODROID-XU3 platform

After the initial results on the ODROID XU+E and the ARM Versatile Express Motherboard
with CoreTile TC2 Daughterboard development platforms, an ODROID XU3 board was
purchased for development during this research. The key features are outlined in chapter 3.3.

60

5.2. EXTENDING THE MODEL FOR THE ODROID-XU3 PLATFORM

The new platform had a working PMU and on-board power sensors. This provided a
much quicker and more stable experiment set-up so the model was quickly extended and
refined. The methodology was quickly adapted to be able to collect system data and analyse
the entire frequency range of the system. This enables generation of complete models that can
predict average power at any energy level, instead of at the highest and lowest points like the
initial results. Since the exploration space was much broader, more work was spent on refining
the methodology and tuning the model in order to achieve low prediction error. The models
are built from obtained measurements from the board using the OLS algorithm. Correlation
analysis is done for events on the train set and only the ones that best model power (minimal
error) are used in the final model. The model that have been developed consists of 3 distinct
components

1. Physical, expressed in equation 5.1, which has physically controlled regressands such
as CPU voltage, CPU frequency and CPU temperature. CPU frequency is proven to
be highly correlated to power consumption [44] however it is claimed, that voltage
and temperature also play a crucial role in determining dynamic power and are not
dependent on frequency. It is demonstrated that adding them increases model accuracy,
compared to just using frequency.

2. PMU events, expressed in equation 5.2, which has events available for both Cortex-
A15 and Cortex-A7. The PMU events common to both CPUs are used, instead of ones
available for only the ARM Cortex-A15. This is necessary if the power model is to be
extended in the future to help make scheduling decision, since it needs to have the same
environments as inputs to both models in order to decide where the tasks should be
migrated. Ten common PMU events available to both CPU core types are considered and
after mathematical analysis the top 4 most correlated to power are chosen in addition
to CPU cycle count, since that is the maximum number of events the Cortex-A7 PMU
can read concurrently without multiplexing. CPU_CYCLES, L1D_CACHE_ACCESS,
L1I_CACHE_ACCESS, INST_RETIRED, DATA_MEM_ACCESS, L2D_CACHE_ACCESS,
EXCEPTION_TAKEN, BRANCH_PRED, BRANCH_MISPRED, BUS_ACCESS were ex-
amined. The list of PMU events is available in the Technical Reference Manuals available
for both CPUs [74], [77].

3. CPU state, expressed in equation 5.3, uses information about time spent in different
relevant CPU states. It is inspired by the insight of Dr Nunez-Yanez in [49], the academic
supervisor of this project. The model expanding on the work done by Walker et al. [61]
by not just using CPU Idle but also other states. This work concludes that just using
CPU Idle does not capture the dynamic CPU power accurately since it was observed that
during workload executions the CPU spent very little time in that state.

61

CHAPTER 5. SINGLE-THREAD MODELS

P(W)=α0 +α1 ×CPU_voltage+α2 ×CPU_ f requency+α3 ×CPU_temperature (5.1)

P(W)=α0 +α1 ×CPU_CY CLES+α2 ×L1D_CACHE_ACCESS

+α3 ×L1I_CACHE_ACCESS+α4 × INST_RETIRED

+α5 ×DAT A_MEM_ACCESS

(5.2)

P(W)=α0 +α1 ×CPU_user_state+α2 ×CPU_system_state+α3 ×CPU_idle_state

+α4 ×CPU_IO_wait_state+α5 ×CPU_IRQ_state

+α6 ×CPU_sof tware_IRQ_state

(5.3)

Then the events from the 3 component models listed above are combined to develop a
Physical + PMU events (called P2) model, shown in equation 5.4 and a model using all 3
groups of events Physical + PMU events + CPU state (called P2S) model, shown in equation
5.5. The P2 and P2S model achieve the high baseline accuracy resulting from the use of the
physical events with the ability to follow the power usage during program execution, thanks
to the PMU events and CPU state information.

P(W)=α0 +α1 ×CPU_voltage+α2 ×CPU_ f requency+α3 ×CPU_temperature

+α4 ×CPU_CY CLES+α5 ×L1D_CACHE_ACCESS

+α6 ×L1I_CACHE_ACCESS+α7 × INST_RETIRED

+α8 ×DAT A_MEM_ACCESS

(5.4)

P(W)=α0 +α1 ×CPU_voltage+α2 ×CPU_ f requency+α3 ×CPU_temperature

+α4 ×CPU_CY CLES+α5 ×L1D_CACHE_ACCESS

+α6 ×L1I_CACHE_ACCESS+α7 × INST_RETIRED

+α8 ×DAT A_MEM_ACCESS+α9 ×CPU_user_state

+α10 ×CPU_system_state+α11 ×CPU_idle_state

+α12 ×CPU_IO_wait_state+α13 ×CPU_IRQ_state

+α14 ×CPU_sof tware_IRQ_state

(5.5)

In this section the model results are presented in graphical form. 2 types of models are
generated – unified single-equation model trained over points on the entire frequency range
of the CPU and models trained on a per-frequency basis. It is demonstrated that the per-
frequency models perform significantly better than the full frequency range models, which to
the researcher’s knowledge is an observation not previously documented on big.LITTLE, since
other work has focused largely on unified models.

62

5.2. EXTENDING THE MODEL FOR THE ODROID-XU3 PLATFORM

5.2.1 Full frequency range models

First the results using the models from the custom methodology are highlighted and show the
performance of the individual component models as well as the grouped P2 and P2S models.
All these models are trained on the train set using all points available from all frequencies
and then tested on all the points of the test set. The percent error between the predicted
and measured power, using the on-board sensors, is calculated and the averages for each
frequency level are presented in Figure 5.12 and Table 5.5. Observations show that the resulting
complex P2S model is not always the best performer, instead simpler models just using
physical characteristics like CPU frequency, voltage and temperature tend to have the lowest
average error, so in general the CPU power consumption is mostly influenced by the physical
information and this is not surprising. Therefore introducing PMU event information and
CPU state information does not improve performance as much as expected. This is due to
the fact that both PMU events and CPU state information in general have quite high variance
for different frequencies (especially low and high frequencies, where greater increase in error
compared to the mid-range frequencies) is observed, so instead of successfully predicting the
finer power changes during workload execution they introduce larger margin of error. This
is due to the fact that the data sampling rate is time based and the number of samples and
the event values at each sample point would vary from frequency to frequency. For example
each time slice would capture a different number of CPU cycles at different frequency levels.
Another thing to note is that the models for the ARM Cortex-A7 are expected to perform a lot
better, since it is a much simple CPU in terms of architecture, however this does not seem to be
the case.

(a) ARM Cortex-A15 Models (b) ARM Cortex-A7 Models

Figure 5.12: Comparison between the generated full frequency range single-thread models
for both processor types on the ODROID XU3 board. The models are generated and vali-
dated by the custom methodology using the cBench workload for the two processor types
on the ODROID XU3 development platform with the eMMC card as OS driver. The Average
Percent Error at each available CPU frequency for the models is presented on the graph. The
model references corresponding to the legend are given in Table 5.5.

The results shown on Figure 5.12 and Table 5.5 indicate that the best full frequency model

63

CHAPTER 5. SINGLE-THREAD MODELS

for the Cortex-A15 and the Cortex-A7 is Physical with an average error of 19.57% and 10.46%
respectively. It is evident that the accuracy of the models is affected by the CPU frequency
and most models achieve the highest accuracy on the mid-range of frequency levels, 1-1.6
GHz for the Cortex-A15 and 0.6-1.2 GHz for the Cortex-A7. Ideally, the model error should be
a flat line close to zero so accuracy is high and invariable with frequency. The fact that new
frequencies involve different voltages means that it is challenging for the model to maintain
accuracy across all the whole frequency range.

Table 5.5: Model reference and total average error for the data in Figure 5.12. The model
Reference is presented for each Model Code from the legend. Total Average Error values are
obtained for each model on the two processor types (when available) by using their prediction
error values across all frequency levels.

Model
Code

Reference
Total Average Error

ARM Cortex-A15 ARM Cortex-A7
(1) Physical 19.57% 10.46%
(2) PMU Events 38.02% 35.22%
(3) P2 23.5% 20.8%
(4) CPU State 59.27% 59.4%
(5) P2S 25.3% 20.99%

5.2.2 Per-frequency models

(a) ARM Cortex-A15 Models (b) ARM Cortex-A7 Models

Figure 5.13: Comparison between the generated per-frequency level single-thread Physical,
P2 and P2S models for both processor types on the ODROID XU3 board. The models are
generated and validated by the custom methodology using the cBench workload for the two
processor types on the ODROID XU3 development platform with the eMMC card as OS driver.
The Average Percent Error at each available CPU frequency for the models is presented on the
graph. The model references corresponding to the legend are given in Table 5.6.

Based on previous observations on the variability of PMU events and CPU state information
between frequency levels it was decided to try and calculate the models on a per-frequency
basis. It was decided to not change any of the equations, despite the frequency and voltage

64

5.3. COMPARISON TO RELATED WORK

level remaining the same for the training, since all the data point at one voltage/frequency
level are used. This is because physical information gives a very good prediction for average
power. Figure 5.13 and Table 5.6 show that the analysis is justified by the results. The data
indicates a large reduction for the average model error and that adding CPU state and PMU
event predictors improve accuracy significantly compared to just using the Physical model.
Overall an average of 8% error for the ARM Cortex-A15 and 5% error for the per frequency
level P2S power model is reported, which is on the target goal for the Cortex-A7. The fact that
the model error is not a straight line means that there is some relationship the model does
not accurately cover. It could be possible to add mechanistic information (e.g. pipeline length,
microarchitecture details) to try to improve accuracy further however this could translate in an
excessively complex model, not suitable for real-time scheduling.

Table 5.6: Model reference and total average error for the data in Figure 5.13. The model
Reference is presented for each Model Code from the legend. Total Average Error values are
obtained for each model on the two processor types (when available) by using their prediction
error values across all frequency levels.

Model
Code

Reference
Total Average Error

ARM Cortex-A15 ARM Cortex-A7
(1) Physical 11.68% 6.74%
(2) P2 8.06% 4.2%
(3) P2S 8.07% 3.58%

5.3 Comparison to related work

The developed composite models P2 and P2S are compared to relevant published work.
Equation 5.6 represent the single-thread interpretation of the model presented by Takouna et
al. [44] from the University of Potsdam. It is referred to as UoP model for short.

P(W)=α0 +α1 ×CPU_ f requency+α2 × (CPU_ f requency)2 (5.6)

Walker et al. [61] from University of Southampton present 2 models built on big.LITTLE
using CPU idle time, presented in equations 5.7 and 5.8. Equation 5.8 has added CPU frequency
related regressands to help capture the entire frequency range they report around 10% accuracy
on the Cortex-A15 and Cortex-A7. They are referred to as UoS CPU Idle model and UoS full
model for short.

P(W)=α0 +α1 ×CPU_idle_state+α2 × (CPU_idle_state)2 (5.7)

65

CHAPTER 5. SINGLE-THREAD MODELS

P(W)=α0 +α1 ×CPU_idle_state+α2 ×CPU_ f requency

+α3 × (CPU_idle_state×CPU_ f requency)

+α4 × (CPU_idle_state)2 +α5 × ((CPU_idle_state)2 ×CPU_ f requency)

(5.8)

Pricopi et al. [50] from Cambridge Silicon Radio present a PMU based model built for the
ARM Cortex-A15 running at 1Ghz. This model is referred to as CSR for short and the events
they use are shown in equation 5.9. They report around 2.6% average error.

P(W)=α0 +α1 × IPC+α2 × INST_SPEC_EX EC_INT
INST_SPEC_EX EC

+α3 × INST_SPEC_EX EC_V FP
INST_SPEC_EX EC

+α4 × L1D_CACHE_ACCESS
INST_SPEC_EX EC

+α5 × L2D_CACHE_ACCESS
INST_SPEC_EX EC

+α6 × L2D_CACHE_REFILL
INST_SPEC_EX EC

(5.9)

Finally equation 5.10 shows the CSR model extended with physical and CPU state infor-
mation as done in the custom approach. The CSR model accesses more PMU events since it
is designed exclusively for the Cortex-A15 while P2 and P2S work for both Cortex-A7 and
Cortex-A15. This model will serve to illustrate how adding physical and CPU state information
can greatly improve performance.

P(W)=α0 +α1 ×CPU_voltage+α2 ×CPU_ f requency+α3 ×CPU_temperature

+α4 × IPC+α5 × INST_SPEC_EX EC_INT
INST_SPEC_EX EC

+α6 × INST_SPEC_EX EC_V FP
INST_SPEC_EX EC

+α7 × L1D_CACHE_ACCESS
INST_SPEC_EX EC

+α8 × L2D_CACHE_ACCESS
INST_SPEC_EX EC

+α9 × L2D_CACHE_REFILL
INST_SPEC_EX EC

+α10 ×CPU_user_state

+α11 ×CPU_system_state+α12 ×CPU_idle_state

+α13 ×CPU_IO_wait_state+α14 ×CPU_IRQ_state

+α15 ×CPU_sof tware_IRQ_state

(5.10)

Figure 5.14 and Table 5.7 show them compared to the best performing per-frequency model
P2S for the Cortex-A15 and Cortex-A7 respectively. In both cases the P2S model performs a lot
better with the exception of the Updated CSR model enhanced by us. This is to be expected
since the Updated CSR is a more complex model with larger, more specialized list of PMU
events that are used in the model. The similarity between the “UoS full” and “UoP” models
highlights that using CPU idle as a regressand does not significantly improve performance

66

5.4. EVALUATING MODEL REPRODUCIBILITY

over the physical regressands that the UoP model uses. However including the other CPU
states as regressands improves accuracy albeit only marginally and just on the Cortex-A7.
Notice that Figure 5.14 does not include results for the CSR models because a model has not
been developed for the Cortex-A7 in their approach. This shows that this work is effective in
producing models with competitive accuracy to the state-of-the art in current research.

(a) ARM Cortex-A15 Models (b) ARM Cortex-A7 Models

Figure 5.14: Comparison between the generated per-frequency level single-thread P2S
model and other published work for both processor types on the ODROID XU3 board.
The models are generated and validated by the custom methodology using the cBench work-
load for the two processor types on the ODROID XU3 development platform with the eMMC
card as OS driver. The Average Percent Error at each available CPU frequency for the models is
presented on the graph. The model references corresponding to the legend are given in Table
5.7.

Table 5.7: Model reference and total average error for the data in Figure 5.14. The model
Reference is presented for each Model Code from the legend. Total Average Error values are
obtained for each model on the two processor types (when available) by using their prediction
error values across all frequency levels.

Model
Code

Reference
Total Average Error

ARM Cortex-A15 ARM Cortex-A7
(1) UoS CPU Idle 15.65% 6.72%
(2) UoS Full 15.65% 6.72%
(3) UoP 11.89% 6.69%
(4) CSR 9.89% -
(5) P2S 8.07% 3.58%
(6) CSR Updated 6.32% -

5.4 Evaluating model reproducibility

The next stage in this research was to evaluate the P2S per-frequency model, shown in section
5.2.2 on other systems. Observations on the ODROID XU+E board highlight that the hardware
exhibits a noticeable energy usage variation with an average of 7.5% power difference and up

67

CHAPTER 5. SINGLE-THREAD MODELS

to 25% energy difference for some parts of cBench. The aim was to evaluate if the ODROID XU3
platform had such a big variance and if the model could be successfully tuned to overcome
this. For this purpose a second ODROID XU3 development board was purchased. The initial
results showed a significant variation between the two when running cBench, despite using
the same operating system and memory card. After some investigation it was decided to use
a command line tool for linux called cset [91]. It provides better program execution control
by setting up "shields", which isolate CPU cores and allow for fine-grain task assignment. An
example of how to use cset to isolate CPU cores 1-3 is given in 5.15

Figure 5.15: Example of system resource allocation using cset. The tool is used to set up a
protected environment on CPU(1-3) with all moveable background and OS tasks transferred
to CPU(0).

With the help of the tool, the CPU core running the workload could be completely isolated
from any external threads and thus reduce OS and data collection experiment overhead. This
greatly reduces platform variability compared to using taskset to assign the workload to the
desired CPU core. Table 5.8 shows that the power difference is halved and more notably the
CPU_CYCLES PMU event variation has been significantly reduced, indicating that the OS
interference has been indeed minimised during the experiment.

Table 5.8: Difference between resource allocation using taskset and cset for both proces-
sor types on the ODROID XU3 board. The data presented is the Average CPU Power and
CPU_CYCLES hardware event Difference between cBench workload executions for both pro-
cessor types across all frequency levels on the ODROID XU3 development platform, with the
eMMC card as OS driver.

ARM Core Type Comparison Metric taskset cset

Cortex-A15
Average Power Difference 20.51% 9.39%
CPU_CYCLES Difference 38.49% 1.37%

Cortex-A7
Average Power Difference 18.87% 13.41%
CPU_CYCLES Difference 6.74% 1.04%

After this crucial step, the next goal was to improve the P2 model by reducing event
multicollinearity, which consists of two or more of the events having a relationship between
them. This results in the model being very sensitive in small variations in the events, thus
reducing stability and accuracy [104], [105], [106]. Reducing the event cross-correlation is

68

5.4. EVALUATING MODEL REPRODUCIBILITY

crucial in order to ensure the developed models have a consistent performance when tested on
multiple platforms. For this purpose two groups of events from the available common events
for the Cortex-A15 and Cortex-A7 have been collected.

Event List 1 (EvL1 for short) is used in conjunction with the physical model from section
5.2.2 to form P2Ev1 as seen in equation 5.11. The events are mainly cache related. On the other
hand Event List 2 (EvL2 for short) predominantly consists of events that handle irregular
execution - branches and exceptions. The full P2EvL2 model is shown in equation 5.12.

P(W)=α0 +α1 ×CPU_voltage+α2 ×CPU_ f requency+α3 ×CPU_temperature

+α4 ×CPU_CY CLES+α5 ×L1D_CACHE_ACCESS

+α6 ×L1I_CACHE_ACCESS+α7 ×L2D_CACHE_ACCESS

+α8 ×BUS_ACCESS

(5.11)

P(W)=α0 +α1 ×CPU_voltage+α2 ×CPU_ f requency+α3 ×CPU_temperature

+α4 ×CPU_CY CLES+α5 × INST_RETIRED

+α6 ×EXCEPTION_T AKEN +α7 ×BRANCH_PRED

+α8 ×BRANCH_MISPRED

(5.12)

The new models are evaluated on the ODROID XU3 using the methodology, now updated
to use cset instead of taskset. Figure 5.16 and Table 5.9 show that significantly improvements
on the original P2 model have been made with the P2EvL1 model achieving the lowest percent
relative error on both the ARM Cortex-A15 and ARM Cortex-A7.

(a) ARM Cortex-A15 Models (b) ARM Cortex-A7 Models

Figure 5.16: Comparison between the generated per-frequency level single-thread P2,
P2EvL1 and P2EvL2 models for both processor types on the ODROID XU3 board. The mod-
els are generated and validated by the custom methodology using the cBench workload for the
two processor types on the ODROID XU3 development platform with the eMMC card as OS
driver. The Average Percent Error at each available CPU frequency for the models is presented
on the graph. The model references corresponding to the legend are given in Table 5.9.

69

CHAPTER 5. SINGLE-THREAD MODELS

Table 5.9: Model reference and total average error for the data in Figure 5.16. The model
Reference is presented for each Model Code from the legend. Total Average Error values are
obtained for each model on the two processor types (when available) by using their prediction
error values across all frequency levels.

Model
Code

Reference
Total Average Error

ARM Cortex-A15 ARM Cortex-A7
(1) P2 8.06% 4.20%
(2) P2EvL1 5.25% 3.49%
(3) P2EvL2 6.50% 5.17%

The final events list and the model are shown in equation 5.13 and the correlation factors are
shown in Table 5.10. It is evident that the model uses events from both sets, with only one cache
event. It was also decided to only use CPU temperature as the component of the physical part
of the model, since both frequency and voltage contribute static values to the per-frequency
model and can be captured by the constant, since it represents the static component of the
modelled power.

P(W)=α0 +α1 ×CPU_temperature

+α2 ×CPU_CY CLES+α3 ×L2D_CACHE_ACCESS

+α4 ×BUS_ACCESS+α5 ×EXCEPTION_T AKEN

+α6 ×BRANCH_MISPRED

(5.13)

Table 5.10: Cross-correlation values between the events selected from P2EvL1 and P2EvL2.
The data presented is the cross-correlation (Corr.) between the selected events from the P2EvL1
and P2EvL2 events lists. The events are represented by their consecutive number (1 to 5) in
their lists. The cross-correlation coefficient range is between -1 and 1, where both end points
represent high correlation.

ARM Core Type Corr.[1;2] Corr.[1;3] Corr.[2;3] Corr.[1;4] Corr.[1;5] Corr.[4;5]
Cortex A-15 -0.05 0.29 0.09 0.13 0.19 0.07
Cortex A-7 -0.05 -0.04 0.25 0.08 0.150 0.1

Table 5.11 shows error of the individual events of the model, when used on their own
with CPU temperature to predict power . Ev1, which corresponds to CPU_CYCLES is the best
performing solo event, which is to be expected. Overall the model is expected to perform much
better than the solo CPU_CYCLES model.

After the preparation several of the ODROID XU3 development were obtained from the
project’s industrial sponsor ARM, in order to validate the model. Each board ran the workload
10 times and the data from the PMU and the on-board sensors was successfully collected and
analysed. Figure 5.17 represents the experiment set-up. Each board used the same model mSD

70

5.4. EVALUATING MODEL REPRODUCIBILITY

Table 5.11: Average total individual model error for each of the five selected events. Each
event from the low cross-correlation list was used to generate and individual per-frequency
level power model by the custom methodology, using the cBench workload for the two
processor types on the ODROID XU3 development platform with the eMMC card as OS driver.
The data presented is the Total Average Error for each model/event across the entire available
CPU frequency range.

ARM Core Type Event 1 Event 2 Event 3 Event 4 Event 5
Cortex A-15 7.67% 16.43% 16.62% 17.1% 14.89%
Cortex A-7 5.59% 10.79% 10.69% 11.83% 10.3%

card, burned with the same OS image. The conditions were kept the same as much as possible
so any environmental factors would not affect the results.

Figure 5.17: Experiment set-up for the platform difference analysis. This is the layout of the
multi-board experiment performed during the research sabbatical at ARM in Cambridge.
The ODROID XU3 boards were set up using the same type of mSD card and OS image. All
environmental conditions are kept the same for all boards.

The resulting model error on each board is shown in Figure 5.18 and Table 5.12. A surprising
result is that the model overall has a higher measured error than expected, as well as the great

71

CHAPTER 5. SINGLE-THREAD MODELS

error variation between the different ODROID XU3 boards.

(a) ARM Cortex-A15 Models (b) ARM Cortex-A7 Models

Figure 5.18: Comparison between the generated per-frequency level single-thread low
event cross-correlation model for both processor types on each of the ODROID XU3 boards.
The models are generated and validated by the custom methodology using the cBench work-
load for the two processor types on each of the ODROID XU3 development platforms with
the mSD card as OS driver. The Average Percent Error at each available CPU frequency for the
models is presented on the graph. The board references corresponding to the legend are given
in Table 5.12.

Table 5.12: Model reference and total average error for the data in Figure 5.18. The board
Reference is presented for each Model Code from the legend. Total Average Error values are
obtained for each model on the two processor types (when available) by using their prediction
error values across all frequency levels. The boards are represented by a number from 1 to 7.

Model
Code

Reference
Total Average Error

ARM Cortex-A15 ARM Cortex-A7
(1) xu3_1 8.24% 7.93%
(2) xu3_2 8.10% 8.44%
(3) xu3_3 8.59% 8.22%
(4) xu3_4 9.68% 8.82%
(5) xu3_5 7.91% 8.23%
(6) xu3_6 8.44% 8.68%
(7) xu3_7 7.95% 8.20%
(8) Mean 8.42% 8.36%

However, of particular interest was the dramatic variability between the different boards
with respect to total workload runtime and average power despite using cset to control
workload execution. The results of the development board variability are shown in Figure 5.19.
Yet despite this the models themselves perform restively similar with relative error varying
between 8 and 10% on both the Cortex-A15 and Cortex-A7.

The next aim is to further improve the model with the hopes of getting below 5% error on
both CPU core types. In order to do that using machine learning methods were used to try and
identify the most optimal set of PMU events from a larger pool of events, instead of relying on

72

5.5. METHODOLOGY REFINEMENT USING AUTOMATIC SEARCH

(a) ARM Cortex-A15 Data (b) ARM Cortex-A7 Data

Figure 5.19: Difference between single-thread workload executions on both processor types
on the ODROID XU3 boards. The data presented is the Average and Maximum Percent Differ-
ence between all of the cBench workload executions for both processor types on the ODROID
XU3 development platforms with the same type of mSD card as OS driver. The presented
metrics are the workload Total Runtime, CPU Average Power, CPU Average Temperature and the
collected hardware events for the low event cross-correlation per-frequency level model.

intuition. The work of Jacobson et al. [59] and Hsieh et al. [43] greatly influenced the decision
to pursue this approach by demonstrating that computer-aided methods produce much better
results compared to conventional means of event selection.

5.5 Methodology refinement using automatic search

First a set of 22 common events for the Cortex-A15 and Cortex-A7 was identified from infor-
mation in their respective Technical Reference Manuals [75][78]. The events are listed below:
CPU_CYCLES; L1I_CACHE_REFILL; L1I_TLB_REFILL; L1D_CACHE_REFILL;
L1D_CACHE_ACCESS; L1D_TLB_REFILL; INST_RETIRED; EXCEPTION_TAKEN;
EXCEPTION_RETURN; CID_WRITE_RETIRED; BRANCH_MISPRED;
BRANCH_PRED; DATA_MEM_ACCESS; L1I_CACHE_ACCESS;
L1D_CACHE_EVICTION; L2D_CACHE_ACCESS; L2D_CACHE_REFILL;
L2D_CACHE_WB; BUS_ACCESS; BUS_CYCLES; BUS_READ_ACCESS;
BUS_WRITE_ACCESS

In order to be able to do an automated search between these events it was necessary to be
able to collect them all in one big dataset. Unfortunately, as detailed in section 2.3.3, the key
limitation of the hardware PMU is that it has a limited number of registers that can collect the
events concurrently. In order to obtain accurate data several executions of the workload needed
to be performed so as to obtain all the PMU events in chunks. In order to obtain a complete

73

CHAPTER 5. SINGLE-THREAD MODELS

dataset and synchronize all the PMU events together to the data from the on-board power
sensors a complicated data concatenation script, detailed in Appendix C.1, was developed.

After all the PMU events have been collected and grouped all the PMU events in one big
dataset, the automatic search algorithm can be initiated. A straightforward approach was
developed, which uses CPU_CYCLES as a base model event and then proceeds to test out all
the other PMU events with it. The algorithm tries the combinations one by one and continues
only if there is an improvement. Since minimizing event cross-correlation did not yield the
expected, the next goal is to minimise the relative model error. After checking the events
one by one and identifying the event combination that achieves the best performance, the
algorithm tries to add another one to the list. It does this until the predefined number of
events is reached or until the model cannot be improved any more. This algorithm is named
bottom-up automatic search. Its details are found in C.3. After an optimal events list has been
identified, the methodology proceeds to validate the model on real hardware by collecting the
events concurrently, which gives the final accuracy metric.

It was decided to train a dedicated model for the Cortex-A15 and the Cortex-A7 separately
to see if there would be a variation in the selected events. As expected the algorithm has
identified two differing models. Equation 5.14 describes the model for the big core and Equation
5.14 describes the one for the LITTLE.

P(W)=α0 +α1 ×CPU_temperature

+α2 ×CPU_CY CLES+α3 ×BUS_CY CLES

+α4 ×DAT A_MEM_ACCESS+α5 ×L1I_CACHE_ACCESS

+α6 ×L1D_CACHE_EV ICTION +α7 × INST_RETIRED

(5.14)

P(W)=α0 +α1 ×CPU_temperature

+α2 ×CPU_CY CLES+α3 ×BUS_CY CLES

+α4 ×DAT A_MEM_ACCESS+α5 ×L1D_CACHE_REFILL

+α6 ×BUS_READ_ACCESS

(5.15)

Figure 5.20 and Table 5.13 show the model performance. The low event correlation model
was labelled as T&MLCC, which stands for Temperature and Manual Low Cross-Correlation
and the model obtained using the automated search T&ASLE, short for Temperature and
Automated Search Low Error. It is evident that the newly trained model has very good per-
formance, but the Temperature and Manual Low Cross-Correlation model has surprisingly
high error, higher than the one generated during the methodology reproducibility experiment
in Figure 5.18 and Table 5.12. This is investigated this later in Subsection . Nevertheless the
results prove that adding automatic search to the methodology can definitely produce accurate
models and, as evidenced by this work, is better than just relying on intuition, since the models
can be tuned more easily for the Cortex-A15 or the Cortex-A7. Identifying optimal dedicated

74

5.5. METHODOLOGY REFINEMENT USING AUTOMATIC SEARCH

models based on intuition, requires a lot of mechanistic knowledge of the architecture and
CPU internal. Using machine learning requires more preparation time in order to collect all the
events in the data set, but ultimately it is architecture agnostic and can be used on any platform
as long as the system is set-up properly. Since the resulting model accuracy is satisfactory, the
next step is to revisit the previous experiment investigating the developed methodology’s
reproducibility.

(a) ARM Cortex-A15 Models (b) ARM Cortex-A7 Models

Figure 5.20: Comparison between the generated per-frequency level single-thread P2,
T&MLCC and T&ASLE models for both processor types on the ODROID XU3 board. The
models are generated and validated by the custom methodology using the cBench workload
for the two processor types on the ODROID XU3 development platform with the eMMC card
as OS driver. The Average Percent Error at each available CPU frequency for the models is
presented on the graph. The model references corresponding to the legend are given in Table
5.13.

Table 5.13: Model reference and total average error for the data in Figure 5.20. The model
Reference is presented for each Model Code from the legend. Total Average Error values are
obtained for each model on the two processor types (when available) by using their prediction
error values across all frequency levels.

Model
Code

Reference
Total Average Error

ARM Cortex-A15 ARM Cortex-A7
(1) P2 8.06% 4.20%
(2) T&MLCC 15.13% 9.45%
(3) T&ASLE 5.24% 4.57%

This time results from only 5 boards were acquired, 4 from the sponsoring company and
the ordinal ODROID XU3 platform used at the in this research. The XU3_1 had a software big
during the course of the experiment and was not able to generate results. Figure 5.21 and Table
5.14 show the results of the experiment. A surprising outcome is that the model performance
data that was obtained was much worse than expected, even worse than the models in the
initial experiment. The boards exhibited the same variability and characteristics as before,
indicated by 5.22.

75

CHAPTER 5. SINGLE-THREAD MODELS

(a) ARM Cortex-A15 Models (b) ARM Cortex-A7 Models

Figure 5.21: Comparison between the generated per-frequency level single-thread T&ASLE
model for both processor types on each of the ODROID XU3 boards. The models are gen-
erated and validated by the custom methodology using the cBench workload for the two
processor types on each of the 6 ODROID XU3 development platforms with the mSD card
as OS driver. The Average Percent Error at each available CPU frequency for the models is
presented on the graph. The board references corresponding to the legend are given in Table
5.12.

Table 5.14: Model reference and total average error for the data in Figure 5.21. The board
Reference is presented for each Model Code from the legend. Total Average Error values are
obtained for each model on the two processor types (when available) by using their prediction
error values across all frequency levels. The boards are represented by a number from 2 to 6.

Model
Code

Reference
Total Average Error

ARM Cortex-A15 ARM Cortex-A7
(1) xu3_2 17.73% 16.06%
(2) xu3_3 17.33% 17.22%
(3) xu3_4 19.08% 16.42%
(4) xu3_5 18.93% 17.60%
(5) xu3_6 16.25% 16.82%
(6) Mean 17.87% 16.82%

After investigating this issue, it was identified that there is a fundamental oversight that
was made. When the model was trained and tested on the original ODROID XU3 board, the
eMMC card was used as OS driver and when doing the reproducibility experiment the mSD
cards were used, due to their low cost and easy set-up. The problem is that the mSD card is
not very stable in terms of power consumption. This is the reason for the big difference in the
results between the first and second experiment, even with the T&MLCC model. In the first
experiment an average of 10 runs was used to obtain results, but the second one needed to be
completed at a much shorter time therefore only 5 workload executions were performed. More
runs means obtaining more data to train the model on, which for a system with high variability
helps a lot. This also explains why the T&ASLE models performs significantly poorly on the
mSD compared to the eMMC - the eMMC is more stable so the power variation is smaller and

76

5.6. ANALYSING MODEL PERFORMANCE BETWEEN THE MSD AND EMMC MEMORY
CARDS

(a) ARM Cortex-A15 Data (b) ARM Cortex-A7 Data

Figure 5.22: Difference between single-thread workload executions on both processor types
on the ODROID XU3 boards for the second board difference experiment. The data pre-
sented is the Average and Maximum Percent Difference between all of the cBench workload
executions for both processor types on the ODROID XU3 development platforms with the
same type of mSD card as OS driver. The presented metrics are the workload Total Run-
time, CPU Average Power, CPU Average Temperature and the collected hardware events for the
T&ASLE model.

can be modelled witch much less data to fit.

The work of Kim et al. [107] highlights the impact of flash storage to performance in
embedded and mobile systems. In addition Linaro’s flash memory surveys highlight the
differences between the different specifications and implementations [108] [109] [110]. They
even have a comparison between the eMMC and mSD cards [111], but not in the context of
power efficiency and stability. This has prompted a short analysis between the two memory
systems, in order to determine which one is most suitable for the purposes of power and
energy analysis and modelling.

5.6 Analysing model performance between the mSD and eMMC
memory cards

The analysis is done by retraining and testing the T&MLCC and T&ASLE models on the first
ODROID XU3 board - XU3_1, since the comparison needs to be done on the same system. This
is done in order to avoid platform variability affecting the experiment results. Some of the data
from the initial training and testing of the T&ASLE model is reused, which is why some of the
model error numbers in Figure 5.23 and Table 5.15 can be seen in previous result listings. In
order to keep things consistent 5 data runs are used for each separate data collection during the
experiment. It is observed that as expected the T&ASLE model on the eMMC has the lowest

77

CHAPTER 5. SINGLE-THREAD MODELS

error for both Cortex-A15 and Cortex-A7 and none of the models for the mSD card achieve
good performance. However it is interesting to note that the T&MLCC model also has a high
error on the eMMC card. This is due to the fact that when the initial analysis to identify the
least correlated events from the intuitive set was done, the mSD card was purposefully used
in order to prepare the methodology for the reproducibility experiment. This means that the
events of the T&MLCC model are tuned for the mSD card and the reason it performs poorly is
because more than 5 runs are needed to generate enough data points for a good model.

(a) ARM Cortex-A15 Models (b) ARM Cortex-A7 Models

Figure 5.23: Comparison between the generated per-frequency level single-thread
T&MLCC and T&ASLE models for both processor and memory card types on the ODROID
XU3 board. The models are generated and validated by the custom methodology using the
cBench workload for the two processor types on the ODROID XU3 development platform with
the eMMC followed by the mSD card as OS driver. The Average Percent Error at each available
CPU frequency for the models is presented on the graph. The model references corresponding
to the legend are given in Table 5.15.

Table 5.15: Model reference and total average error for the data in Figure 5.23. The model
Reference is presented for each Model Code from the legend. Total Average Error values are
obtained for each model on the two processor types (when available) by using their prediction
error values across all frequency levels.

Model
Code

Reference
Total Average Error

ARM Cortex-A15 ARM Cortex-A7
(1) T&MLCC on mSD 20.07% 23.05%
(2) T&MLCC on eMMC 15.13% 9.45%
(3) T&ASLE on mSD 18.64% 18.24%
(4) T&ASLE on eMMC 5.24% 4.57%

A very big indicator of the fundamental difference between the mSD and the eMMC card
is the incredibly high variation between the two. Figure 5.24 shows that runtime difference can
be as high as 90% and the average power as high as 35%. This means that the models cannot be
reused between the memory cards at all and in order to achieve a good performance a specific
model need to be fitted for the target system. A consistently very high variation between the

78

5.6. ANALYSING MODEL PERFORMANCE BETWEEN THE MSD AND EMMC MEMORY
CARDS

PMU events on the two memory cards can be observed for both the T&MLCC and T&ASLE
models.

(a) ARM Cortex-A15 T&MLCC Events Data (b) ARM Cortex-A7 T&MLCC Events Data

(c) ARM Cortex-A15 T&ASLE Events Data (d) ARM Cortex-A7 T&ASLE Events Data

Figure 5.24: Difference between single-thread workload executions on both processor types
on the ODROID XU3 boards using both memory card types. The data presented is the
Average and Maximum Percent Difference between the cBench workload executions for both
processor types on the ODROID XU3 development platform with the eMMC followed by the
mSD card as OS driver. The presented metrics are the workload Total Runtime, CPU Average
Power, CPU Average Temperature and the collected hardware events for the T&MLCC and
T&ASLE models during independent executions.

Once the big differences between the two flash memory cards and their impact on total
system performance and energy efficiency the experiment have been identified and high-
lighted, key priority becomes identifying which one is better suited for the power modelling
methodology. In order to do this the card stability is investigated by isolating the different
experiment runs and comparing the workload runtime, average power, temperature and PMU
events. For this purpose only data for one set of events needed to be collected so the T&ASLE

79

CHAPTER 5. SINGLE-THREAD MODELS

model was selected.

5.6.1 Investigating mSD card stability

First the analysis begins with investigating the mSD card. Figure 5.25 shows that despite the
high error, the model is fairly consistent across the 5 runs of the experiment. However the
performance variability for the Cortex-A7 is very high.

(a) ARM Cortex-A15 Models (b) ARM Cortex-A7 Models

Figure 5.25: Comparison between the repeatedly generated per-frequency level single-
thread T&ASLE model for both processor types on each of the ODROID XU3 boards using
the mSD card as OS driver. The models are generated and validated by the custom methodol-
ogy using the cBench workload for the two processor types on the ODROID XU3 development
platform with the mSD card as OS driver. The Average Percent Error at each available CPU
frequency for the models is presented on the graph. The model references corresponding to
the legend are given in Table 5.16.

Table 5.16: [Model reference and total average error for the data in Figure 5.25. The experi-
ment execution Reference is presented for each Model Code from the legend. Total Average Error
values are obtained for each model on the two processor types (when available) by using their
prediction error values across all frequency levels.

Model
Code

Reference
Total Average Error

ARM Cortex-A15 ARM Cortex-A7
(1) Run 1 18.34% 15.08%
(2) Run 2 18.62% 18.37%
(3) Run 3 19.56% 17.95%
(4) Run 4 18.33% 20.40%
(5) Run 5 18.37% 19.38%
(6) Mean 18.64% 18.24%

Figure 5.26 shows the same results as when comparing the different platforms during the
reproducibility experiment. The PMU events are consistently stable, due to using cset with the
methodology to minimise OS overhead. Despite this there is a lot of variation in the workload

80

5.6. ANALYSING MODEL PERFORMANCE BETWEEN THE MSD AND EMMC MEMORY
CARDS

runtime and average power between the runs for both the Cortex-A15 and Cortex-A7. This
means that making consistent models for this memory system is a big challenge.

(a) ARM Cortex-A15 Data (b) ARM Cortex-A7 Data

Figure 5.26: Difference between single-thread workload executions on both processor types
on the ODROID XU3 board using the mSD card as OS driver. The data presented is the
Average and Maximum Percent Difference between all of the cBench workload executions for
both processor types on the same ODROID XU3 development platform with the mSD card as
OS driver. The presented metrics are the workload Total Runtime, CPU Average Power, CPU
Average Temperature and the collected hardware events for the T&ASLE model.

In the end the initial hypothesis that the mSD is very unstable and not very suitable for
power modelling holds true.

(a) ARM Cortex-A15 Models (b) ARM Cortex-A7 Models

Figure 5.27: Comparison between the repeatedly generated per-frequency level single-
thread T&ASLE model for both processor types on each of the ODROID XU3 boards us-
ing the eMMC card as OS driver. The models are generated and validated by the custom
methodology using the cBench workload for the two processor types on the ODROID XU3
development platform with the eMMC card as OS driver. The Average Percent Error at each
available CPU frequency for the models is presented on the graph. The model references
corresponding to the legend are given in Table 5.17.

81

CHAPTER 5. SINGLE-THREAD MODELS

5.6.2 Investigating eMMC card stability

The results from the mSD experiment are compared to the ones for the eMMC card and it is
identified that the same PMU events can capture system behaviour much better. Figure 5.27
and Table 5.17 show that despite some variability on the ARM Cortex-A15, overall the eMMC
card can produce much better power models.

Table 5.17: Model reference and total average error for the data in Figure 5.27. The experi-
ment execution Reference is presented for each Model Code from the legend. Total Average Error
values are obtained for each model on the two processor types (when available) by using their
prediction error values across all frequency levels.

Model
Code

Reference
Total Average Error

ARM Cortex-A15 ARM Cortex-A7
(1) Run 1 4.65% 4.77%
(2) Run 2 5.16% 4.59%
(3) Run 3 5.04% 4.65%
(4) Run 4 5.93% 4.48%
(5) Run 5 5.44% 4.37%
(6) Mean 5.24% 4.57%

(a) ARM Cortex-A15 Data (b) ARM Cortex-A7 Data

Figure 5.28: Difference between single-thread workload executions on both processor types
on the ODROID XU3 board using the eMMC card as OS driver. The data presented is the
Average and Maximum Percent Difference between all of the cBench workload executions for
both processor types on the same ODROID XU3 development platform with the eMMC card
as OS driver. The presented metrics are the workload Total Runtime, CPU Average Power, CPU
Average Temperature and the collected hardware events for the T&ASLE model.

Final analysis shows that the eMMC variability is very low and the card is very stable.
The results show below 5% variation for the ARM Cortex-A15 and 3% variation for the ARM
Cortex-A7 on almost all collected points of reference. The only things with high variability are

82

5.7. FURTHER DEVELOPMENT - COMPLETE EXPLORATION OF THE PMU EVENT SET

some cache-related PMU events, which can reduce model performance consistency. This issue
is addressed later on in Section 5.7.

The evident conclusion of the reproducibility and the memory system comparison exper-
iments is that the eMMC card is much more suitable for power modelling, since it requires
less workload executions in order to produce accurate models. Similar conclusions as [107]
have been derived in that the type of memory used on the mobile platform greatly influences
performance and energy efficiency. Any further analysis is beyond the scope of this thesis. For
all future experiments only the eMMC card is used. From this point on this work focuses on
refining the methodology and there was no other opportunity to revisit the reproducibility
experiments and improve upon the mSD models.

5.6.3 Addressing the temperature variability

Given all of this, the ODROID-XU3 is a great platform, but it does have one big limitation,
which was left unresolved. The platform itself has a big cooling unit in order to prevent it
from overheating, so the effects of temperature on the power models are unable to be explored.
This investigation is mentioned in Section 3.3, where an overview of the ODROID XU3 board
is presented. For the purposes of the experiments the fan was switched on at highest setting
during the whole course of the workloads and temperature was not included in the model
events.

5.7 Further development - complete exploration of the PMU event
set

This Section briefly outlines the results of applying the machine learning methods on the
concatenated data. An approach has been developed, which uses CPU_CYCLES as base event
and tries to add 1 more PMU event each iteration of the search algorithm until the desired
number of events is reached or no more event that improve the accuracy can be found. This
is labelled as bottom-up search. The pseudocode version of the algorithm is presented in
Appendix C.3. Figure 5.29 and Table 5.18 represent the effects of the search algorithm with
each event added. Note that CPU_CYCLES is always present as a first event in the models
since it has a dedicated PMU register as well as being highly correlated to power on its own,
as is shown by model code (1).

The model is computed using OLS method in octave and follows the equations listed
below. I can be seen that the Cortex-A15 model does not use the full 7 registers available in the
PMU for concurrent collection, since it has achieved a local optima at 6 events.

The per-frequency models are given in equation 5.16 and 5.17 and the mathematical ex-
ample expression for the intra-core model is given in equation 5.19. The reasoning behind
model 5.19 is to allow the ability to predict average power from the events from one frequency

83

CHAPTER 5. SINGLE-THREAD MODELS

(a) ARM Cortex-A15 Models (b) ARM Cortex-A7 Models

Figure 5.29: Breakdown of the generated per-frequency level single-thread model errors at
each iteration of the automatic event selection algorithm for both processor types on the
ODROID XU3 board. The models are generated and validated by the custom methodology
using the cBench workload for the two processor types on the ODROID XU3 development
platform with the eMMC card as OS driver. The Average Percent Error at each available CPU
frequency for the models is presented on the graph. The model references corresponding to
the legend are given in Table 5.18.

Table 5.18: Model reference and total average error for the data in Figure 5.29. The model
Reference is presented for each Model Code from the legend. Total Average Error values are
obtained for each model on the two processor types (when available) by using their prediction
error values across all frequency levels.

Model
Code

Reference
Total Average Error

ARM Cortex-A15 ARM Cortex-A7
(1) CPU_CYCLES 5.83% 4.72%
(2) 1 Event 3.91% 4.34%
(3) 2 Events 2.90% 3.63%
(4) 3 Events 2.06% 3.28%
(5) 4 Events 1.92% 3.09%
(6) 5 Events 1.79% -
(7) CPU_CYLES + Events 1.76% 3.10%

level for another on the same core, hence its chosen name. The main distinction is that it
only predict average power an not real-time power like the per-frequency models which can
only be used on one level. A way to think about this is that the per-frequency model gives a
detailed analysis on the application at runtime (0.5s interval) if the frequency is unchanged,
and the intra-core model gives an estimation of the average power on various frequency levels
based on a window of PMU events. The intra-core model uses a simple approach to scale the
current incoming PMU events by using the property that the events of each data sample are
approximately as proportional as their averages for the whole runtime of the workload. Thus
turning real-time information to information about average data. The event scaling method
is demonstrated in Equation 5.18, where ev1_ f 1 and ev1_ f 2 represent the value of hardware

84

5.7. FURTHER DEVELOPMENT - COMPLETE EXPLORATION OF THE PMU EVENT SET

event ev1 at data samples on two CPU frequencies f 1 and f 2. After the scaling factor has
been identified by using the training set then the intra-core model can be validated using one
frequency level from the test set as f1 and the other as f2 in equation 5.19. This special model
can be extended into a power-aware scheduler for DVFS.

PCPU_A15 =α0 +α1 ×CPU_CY CLES+α2 ×L1I_CACHE_ACCESS

+α3 ×L1D_CACHE_ACCESS+α4 ×BUS_CY CLES

+α5 ×BUS_PERIPH_ACCESS+α6 ×BRANCH_SPEC_EX EC_RET

(5.16)

PCPU_A7 =α0 +α1 ×CPU_CY CLES+α2 ×BUS_READ_ACCESS

+α3 ×L2D_CACHE_REFILL+α4 ×UN ALIGNED_LOAD_STORE

+α5 ×BUS_CY CLES

(5.17)

ev1_ f 1

ev1_ f 2
= ev1_ f 1

ev1_ f 2

ev1_ f 1
ev1_ f 2

ev1_ f 1
= ev1_ f 2 (5.18)

ev1_ f 2

ev1_ f 1
= Event Scaling Factor

PCPU_ f 1 =α0 +α1 × ev1_ f 2 ×
ev1_ f 1

ev1_ f 2
+α2 × ev2_ f 2 ×

ev2_ f 1

ev2_ f 2
+ ...+αn × evn_ f 2 ×

evn_ f 1

evn_ f 2
(5.19)

Table 5.19: Model reference and total average error for the data in Figure 5.30. The model
Reference is presented for each Model Code from the legend. Total Average Error values are
obtained for each model on the two processor types (when available) by using their prediction
error values across all frequency levels.

Model
Code

Reference
Total Average Error

ARM Cortex-A15 ARM Cortex-A7
(1) Automatic 1.76% 3.10%
(2) Collected 2.49% 2.99%
(3) Intra-Core 0.99% 1.01%

Figure 5.30 and Table 5.19 represent the final outcome of the machine learning assisted
methodology, with equation number in the figure and corresponding names given in the
table. The experiment data shows that there is not much of a difference between the automatic
search using concatenated data and the hardware validated model with all events collected
at the same time. It can also be observed that the intra-core model has higher accuracy, but

85

CHAPTER 5. SINGLE-THREAD MODELS

(a) ARM Cortex-A15 Models (b) ARM Cortex-A7 Models

Figure 5.30: Comparison between the generated per-frequency level single-thread Auto-
matic, Collected and Intra-Core models for both processor types on the ODROID XU3
board. The models are generated and validated by the custom methodology using the cBench
workload for the two processor types on the ODROID XU3 development platform with the
eMMC card as OS driver. The Average Percent Error at each available CPU frequency for the
models is presented on the graph. The model references corresponding to the legend are given
in Table 5.19.

(a) ARM Cortex-A15 Data (b) ARM Cortex-A7 Data

Figure 5.31: Difference between single-thread workload executions on both processor types
on the ODROID XU3 board. The data presented is the Average and Maximum Percent Difference
between all of the cBench workload executions for both processor types on the ODROID
XU3 development platforms with the eMMC card as OS driver. The presented metrics are
the workload Total Runtime, CPU Average Power, CPU Average Temperature and the collected
hardware events for the collected model.

bear in mind it only approximates the average power and cannot give detailed application
profiling during execution like the standard per-frequency model can. The developed models
are also well within the target accuracy, so the methodology can make accurate models for the
single-thread case.

Figure 5.31 shows the workload runtime, average power and PMU event variability be-

86

5.8. MODEL VALIDATION AND APPLICATION

tween the experiment runs. It is very low, because only stable events have been chosen and
the methodology has low measurement overhead. Low variability is critical when building
replicable models, even on a different set of data. Some memory events, which might have
high correlation to power, also have a high degree of variability which might make the model
not usable in certain circumstances, hence the choice to only use events with less than 5%
variability in the search tree. Out of the 67 PMU events available for the Cortex-A15 and the 42
available for the Cortex-A7 only 55 for the Cortex-A15 and 31 for the Cortex-A7 are considered
for possible selection for the per-frequency model. This is the reason the models achieve such
low event variability and model error.

5.8 Model validation and application

The final part in the model evaluation is comparison against other published work. There
are quite a few other researchers working in this area as well as some models built on the
same research platform. The models are compared against the previous work in Nikov et al
[21], which did not include the machine learning methods, as well as Pricopi et al [50] and
Walker et al [62] which both utilise PMU events for their models and are both developed for
ARM CPUs. This is done by using the custom methodology and their set of PMU events to
train and validate their models. Their reported accuracy in the respective publications is also
taken into account to see if there is a significant difference in the used methodologies. The
developed approach uses a significantly larger number of samples for the data set compare to
others and the entire frequency range is explored in much greater detail with the per-frequency
models. Also, to the researcher’s knowledge, this work is the only one to present a true power
model for the heterogeneous system with the intra-core model, instead of developing separate
models for the different types of processing units.

Pricopi [50]

This model is labelled as equation code (1) in Figure 5.32 and Table 5.20. They have a
mechanistic model for the Cortex-A15, which utilises experience and a deeper under-
standing of the architecture to select the list of PMU events used. They have not produced
a model for the Cortex-A7 on the justification that the CPU core does not exhibit much
variation in its power dissipation and can be approximated by a single number. Their
work is done on an experimental platform and on a single CPU frequency, hence the
simplified power profile. Nevertheless this is one of the earliest PMU based models
available for the ARMv7 architecture and provides great insight into the use of PMU

87

CHAPTER 5. SINGLE-THREAD MODELS

events for power modelling.

PCPU_A15 =α0 +α1 × INST_SPEC_EX EC
CPU_CY CLES

+α2 × INST_SPEC_EX EC_INT
INST_SPEC_EX EC

+α3 × INST_SPEC_EX EC_V FP
INST_SPEC_EX EC

+α4 × L1D_CACHE_ACCESS
INST_SPEC_EX EC

+α5 × L2D_CACHE_ACCESS
INST_SPEC_EX EC

+α6 × L2D_CACHE_REFILL
INST_SPEC_EX EC

(5.20)

Walker [62]

Labelled as equation code (2) in Figure 5.32 and Table 5.20. The research team from
University of Southampton have published a model for the Cortex-A15 on the same
platform, the ODROID-XU3. They use a similar machine learning method to traverse the
list of available PMU events, but their methodology uses a different workload and does
not utilise some of this work’s approaches to minimise overhead and event variability.

PCPU_A15 =α0 +α1 ×CPU_CY CLES+α2 × INST_SPEC_EX EC

+α3 ×L2D_READ_ACCESS+α4 ×UN ALIGNED_ACCESS

+α5 × INST_SPEC_EX EC_INT +α6 ×L1I_CACHE_ACCESS

+α7 ×BUS_ACCESS

(5.21)

Old model [21]

Labelled as equation code (3) in Figure 5.32 and Table 5.20. In the previous work, an intu-
itive approach was used to select the PMU events. A previous version of the methodology
was also used, which had higher overhead and variability. This is why improvement
in the model accuracy can be seen using the new methodology even when using the
same set of events. This is a clear indication that a great fundamental improvement in
the methodology was achieved, not just in the developed power models.

PCPU =α0 +α1 ×CPU_CY CLES+α2 ×L1D_CACHE_ACCESS

+α3 ×L1I_CACHE_ACCESS+α4 × INST_RETIRED

+α5 ×DAT A_MEM_ACCESS

(5.22)

From Figure 5.32 and Table 5.20 clearly indicate that the latest model, labelled as equation
code (4), has the best performance. Some inconsistencies can also be seen in the reported
accuracy of the other models compared to the measured one. This is due to the different
methodology, but mostly due to the variation in workload. This is again another highlight that
developing a methodology should be the focus of power modelling research since the many
factors involved prevent there to be a universal solution to this complex problem. Instead
research should be focusing on developing flexible solutions, which the industry can tailor
and use for their own configurations and target applications. This work also demonstrates that

88

5.9. SUMMARY OF RESULTS

(a) ARM Cortex-A15 Models (b) ARM Cortex-A7 Models

Figure 5.32: Comparison between the generated per-frequency level single-thread collected
model and other published work for both processor types on the ODROID XU3 board. The
models are generated and validated by the custom methodology using the cBench workload
for the two processor types on the ODROID XU3 development platform with the eMMC card
as OS driver. The Average Percent Error at each available CPU frequency for the models is
presented on the graph. The model references corresponding to the legend are given in Table
5.20.

machine learning can be great for this king of optimisation problem, where the platform is
used as a black box and its more accurate and more robust than using intuition and mechanistic
information.

Table 5.20: Model reference and total average error for the data in Figure 5.32. The model
Reference is presented for each Model Code from the legend. Reported Average Error values are
taken from the related publication (when available). Total Average Error values are obtained for
each model on the two processor types (when available) by using their prediction error values
across all frequency levels.

Model
Code

Reference
Reported Average Error Total Average Error

ARM C.-A15 ARM C.-A7 ARM C.-A15 ARM C.-A7
(1) Pricopi 1.2% - 5.01% -
(2) Walker 2.8% 3.8% 4.81% -
(3) Nikov - - 3.41% 4.81%
(4) New S-T - - 2.49% 2.99%

5.9 Summary of results

This chapter outlines the entire journey into perfecting the methodology for development of
single-thread models on the big.LITTLE SoC. The initial models built on the ODROID XU+E
and ARM Versatile Express Motherboard with CoreTile TC2 Daughterboard development
platforms are thoroughly described. The methodology evolution, when using the ODROID
XU3 development board, has also been presented. A key milestone is the deployment of

89

CHAPTER 5. SINGLE-THREAD MODELS

per-frequency models, which greatly improve prediction accuracy by reducing the system
complexity the model needs to capture. Another significant contribution is the use of an
automatic search algorithm to identify the best possible set of PMU events and achieve sub 3%
model prediction error on both the ARM Cortex-A15 and ARM Cortex-A7 processors.

Some uncommon topics are also investigated, such as development platform variability
as well as SoC temperature and memory system impact on performance and power. The
difference between the eMMC and mSD memory card has been investigated into great depth
with the conclusion that the eMMC memory card is much more stable and from that point on
is used as OS driver for all later experiments.

It is claimed that the results and experiments provide unique insight into single-thread
models for HES and have contributed greatly to the general area of power management.

90

C
H

A
P

T
E

R

6
MULTI-THREAD MODELS

A fter investigating the single-thread models, the research focuses on exploring the
multi-thread case. For these purposes a different workload with a different system
set-up was used, detailed in the following chapter.

It begins with Section 6.1 describing the initial efforts in developing multi-thread power
models on the ODROID XU3 board with information about the different system configurations
and corresponding models.

Afterwards Chapter 6.2 explains the additional techniques and search algorithms that were
developed in an effort to further improve model accuracy. Unfortunately the multi-thread
power models, developed for ARM Cortex-A15 processor do not meet the required accuracy
target. The causes of this and possible solutions to overcoming the model limitation are briefly
presented.

Chapter 6.4 discusses the results of the comparison between the custom per-frequency level
power models and related work, validated using the developed methodology.

6.1 Initial results

In order to develop multi-thread models the PARSEC 3.0 benchmark suite was configured
and used. Details about the workload are given in Section 4.1.2.2. The methodology was
used to find out the most optimal PMU events for the multi-thread case using the bottom-up
event search algorithm. Equations 6.1 and 6.2 show the mathematical expression for each best
model. Both multi-thread models use very different events compared to the best performing
single-thread models computed in Section 5.7. The power modelling equation for the ARM
Cortex-A15 uses all 7 available counters in the PMU. It is interesting to note that the algorithm

91

CHAPTER 6. MULTI-THREAD MODELS

identified branch and cache-related events to be the most useful to the model. The power model
for the ARM Cortex-A7 uses all 5 available PMU counters and similarly to the Cortex-A15
model relies on cache-related events. In addition to the events the number of cores are also
included in the model variables. The main reason for this is to distinguish between different
configurations, but the event also smooths out the percent error prediction.

PCPU_A15 =α0 +α1 ×num_cores+α2 ×CPU_CY CLES

+α3 ×L1D_READ_ACCESS+α4 ×BRANCH_MISPRED

+α5 ×BARRIER_SPEC_EX EC_DMB+α6 ×L2D_INV ALIDATE

+α7 ×BRANCH_SPEC_EX EC_IMM_BRANCH+α8 ×BUS_CY CLES

(6.1)

PCPU_A7 =α0 +α1 ×num_cores+α2 ×CPU_CY CLES

+α3 ×L1I_CACHE_ACCESS+α4 ×L1D_CACHE_WB

+α5 ×DAT A_READS+α6 × IMMEDI ATE_BRANCHES

(6.2)

(a) ARM Cortex-A15 Models (b) ARM Cortex-A7 Models

Figure 6.1: Comparison between the generated per-frequency level multi-thread models
for both processor types for different system configurations on the ODROID XU3 board.
The models are generated and validated by the custom methodology using the PARSEC 3.0
workload for the two processor types on the ODROID XU3 development platform with the
eMMC card as OS driver. The Average Percent Error at each available CPU frequency for the
models is presented on the graph. The model references corresponding to the legend are given
in Table 6.1.

The train data set from all 4 CPU core configurations is used in order to fit the model
coefficients. As stated earlier, the initial hypothesis for the multi-thread case was that having
dedicated models for each core configuration (1,2,3 or 4 running processor cores in parallel)
would yield the best performing models. It can be observed from Figure 6.1 and Table 6.1
that using the the full training data from all configuration produces a better overall model
even when tested on the individual configuration case data. A dedicated model only produces
a lower average percent error in the 1 core and 2 cores configurations, but it is not enough

92

6.2. EXTENDED METHODOLOGY

Table 6.1: Model reference and total average error for the data in Figure 6.1. The model
Reference is presented for each Model Code from the legend. Total Average Error values are
obtained for each model on the two processor types (when available) by using their prediction
error values across all frequency levels for the corresponding system configuration.

Model
Code

Reference
Total Average Error

ARM Cortex-A15 ARM Cortex-A7
(1) All Core Bottom-Up 1 Core 4.12% 3.65%
(2) All Core Bottom-Up 2 Cores 6.97% 5.37%
(3) All Core Bottom-Up 3 Cores 9.70% 7.33%
(4) All Core Bottom-Up 4 Cores 12.69% 9.13%
(5) Dedicated Bottom-Up 1 Core 3.34% 3.22%
(6) Dedicated Bottom-Up 2 Cores 6.81% 5.41%
(7) Dedicated Bottom-Up 3 Cores 11.06% 7.64%
(8) Dedicated Bottom-Up 4 Cores 14.33% 9.50 %

to overcome the significantly higher error in the other cases. This is because the dedicated
models have different sets of events for each configuration, identified by the automatic search
algorithm and actually using the data from all configurations for the all core model overall
produces a more stable set of events.

6.2 Extended methodology

After investigating the all core vs. dedicated models case the research goes on to experimenting
with a few more optimisation criteria for the search algorithm. Minimising the model error
standard deviation and the PMU event cross correlation are two other approaches that could
potentially improve model accuracy [62]. They do this by enabling the traversal of a different
search tree and thus overcome any possible local minima that the automated search algorithm
might be trapped in. A second automatic search method is also developed, which uses a top-
down approach. The algorithm starts off by first making a model using all the available events
and then slowly removing the event which causes this model to improve the most. This way
the search tree is trimmed from the top, hence the name. Often this algorithm will get stuck
on a larger set of events that can physically be collected concurrently on the PMU (7 for the
Cortex-A15 and 5 for the Cortex-A7), so the rest of the search is done using an exhaustive
approach which identifies all the combinations of 7 or 5 events from the already pruned search
tree and extracts only the best performing combination. The reason the exhaustive method
is not used on its own is because it takes a very long time to complete using the full events
list. For example, for the Cortex-A15, all the combinations of 6 events out of the total list
of 54 usable events need to be investigated, which means a total of 25827165 combinations
(the justification about why CPU_CYCLES is always the first event of the model and the
details about the usable events list are present in section 5). This is a very large number of

93

CHAPTER 6. MULTI-THREAD MODELS

combination to go through, which is why these techniques have been developed in order to
improve the probability of identifying the most optimal solution. The details of the top-down
and exhaustive algorithms are presented in Appendix C.4 and C.5 respectively.

In addition to these investigations, a model generated only for the multi-core case on data
from 2 cores, 3 cores and 4 cores configurations has been explored. The results of these experi-
ments are shown in Figure 6.2 and Table 6.2. Only the most significant experiment cases are
shown. The results highlight that the bottom-up algorithm produces the most accurate models,
while taking much less computation time. Also minimising the error standard deviation or
PMU event cross correlation does not improve model accuracy as evidenced by model codes
(6), (7) and (8). Removing the num_cores event from the model as shown in model code (4)
produces a slightly better power model for the Cortex-A15, but worse for the Cortex-A7. Also
from Figure 6.2 a slight error spike can be observed at the higher frequencies so the conclusion
is that it does not improve the base all core bottom-up model. The only other better model is
model code (5) which removes the practical event limit and is allowed to use the best available
PMU events. This model uses 9 events for the Cortex-A15 and again 9 events for the Cortex-A7
including num_cores and CPU_CYCLES. This indicates, that for such complex embedded
systems a higher number of PMU counters might be beneficial when using system event based
models for predicting power consumption.

(a) ARM Cortex-A15 Models (b) ARM Cortex-A7 Models

Figure 6.2: Comparison between the different automatic event selection methods for gen-
erating per-frequency level multi-thread models for both processor types on the ODROID
XU3 board. The models are generated and validated by the custom methodology using the
PARSEC 3.0 workload for the two processor types on the ODROID XU3 development platform
with the eMMC card as OS driver. The Average Percent Error for the models at each available
CPU frequency over the corresponding system configurations is presented on the graph. The
model references corresponding to the legend are given in Table 6.2.

After identifying that the all core bottom-up per-frequency model is overall the best per-
forming one it is validated using data from the concurrent real-time collection of the PMU
events used in the model. Also as described in section 5.7 the event scaling technique is used
to obtain the intra-core model. However, the num_cores event is left unscaled, since it is just

94

6.2. EXTENDED METHODOLOGY

Table 6.2: Model reference and total average error for the data in Figure 6.2. The model
Reference is presented for each Model Code from the legend. Total Average Error values are
obtained for each model on the two processor types (when available) by using their prediction
error values across all frequency levels and corresponding system configurations.

Model
Code

Reference
Total Average Error

ARM C.-A15 ARM C.-A7
(1) All Core Bottom-Up 7.12% 5.46%
(2) Multicore Only Bottom-Up 9.55% 7.01%
(3) All Core Top-Down + Exhaustive - 5.91%
(4) All Core Bottom-Up No Core Count 7.06% 5.57%
(5) All Core Bottom-Up No Event Limit 6.92% 5.35%
(6) All Core Bottom-Up Std.Dev. 14.68% 9.22%
(7) All Core Top-Down + Exhaustive Std.Dev. - 7.28%
(8) All Core Bottom-up Cross Corr. 20.35% 9.86%

the static number of enabled cores and there is no need to adjust it like the other PMU events.
The finalised models validated on real hardware are shown in Figure 6.3 and Table 6.3. As
expected the collected model is slightly less accurate than the one using the concatenated PMU
event data, especially for the higher frequency levels of the Cortex-A15.

(a) ARM Cortex-A15 Models (b) ARM Cortex-A7 Models

Figure 6.3: Comparison between the generated per-frequency level multi-thread Automatic,
Collected and Intra-Core models for both processor types on the ODROID XU3 board. The
models are generated and validated by the custom methodology using the PARSEC 3.0
workload for the two processor types on the ODROID XU3 development platform with
the eMMC card as OS driver. The Average Percent Error for the models at each available CPU
frequency over all system configurations is presented on the graph. The model references
corresponding to the legend are given in Table 6.3.

Figure 6.4 summarises the event variability of the events for each CPU cluster model. It
demonstrates that good methodology stability is achieved even in the multi-thread case, with
less that 5% maximum difference between workload executions for both processor types. This
is mainly caused by some cache related events, which still contribute greatly to model accuracy,
so should not be excluded.

95

CHAPTER 6. MULTI-THREAD MODELS

Table 6.3: Model reference and total average error for the data in Figure 6.3. The model
Reference is presented for each Model Code from the legend. Total Average Error values are
obtained for each model on the two processor types (when available) by using their prediction
error values across all frequency levels and system configurations.

Model
Code

Reference
Total Average Error

ARM Cortex-A15 ARM Cortex-A7
(1) Automatic 7.12% 5.46%
(2) Collected 9.03% 5.68%
(3) Intra-Core 0.65% 1.85%

(a) ARM Cortex-A15 Data (b) ARM Cortex-A7 Data

Figure 6.4: Difference between multi-thread workload executions on both processor types
on the ODROID XU3 board. The data presented is the Average and Maximum Percent Difference
between all of the PARSEC 3.0 workload executions for both processor types on the ODROID
XU3 development platforms with the eMMC card as OS driver. The presented metrics are
the workload Total Runtime, CPU Average Power, CPU Average Temperature and the collected
hardware events for the collected model.

Unfortunately, according to the target accuracy metrics presented in Table 4.4 in Chapter 4,
the ARM Cortex-A15 multi-threaded model has a higher error than required for successful use
in real-time. The final collected models show 9.03% and 5.68% error for the Cortex-A15 and
Cortex-A7, which for the former is higher than the 7.57% target. How these targets are defined
and calculated is explained in detail in Subsection 4.3.3. Since the model is computed using the
automated search approach under best possible conditions (low methodology overhead and
reduced OS impact on experiment) the conclusion is that at this state of the work this is the
best model the methodology can produce. A possible limitation is the fixed number of counters
available in the PMU, which do not provide enough information/events to successfully
describe the system behaviour in the multi-thread case. Another limitation could be the
available events themselves. More specialised hardware events for the multi-threaded case
could also provide useful information to the model. Methods to improve the multi-thread

96

6.3. COMPARISON TO RELATED WORK

per-frequency power models for the ARM Cortex-A15 remain a topic of future work. However
accurate predictions of the average power can still be performed for both processor types as
shown by the intra-core model.

6.3 Comparison to related work

In this section the PMU event-based models are compared to other related work. It is demon-
strated how the comprehensive automatic event search methods improve accuracy with respect
to methods that require intuitive choice. A future topic of research is to explore if there is any
other approach out there that will satisfy the accuracy requirement. In addition to the models
described in section 5.8 an extra one is included in the comparison, namely the PMU event
based power model described in Rethinagiri et al [56].

Rethinagiri [56] This model is labelled as equation code (6) in Figure 6.5 and Table 6.4. The
interesting thing about this model is the heavy emphasis on Cache events. In the com-
parison the single-core version of their model is used. The authors have developed a
dual-core specific model, tested on the Cortex-A9, however that model requires col-
lecting the IPC and L1_CACHE_MISS/REFILL event counts for each Core. This could
only be done in simulation since the dedicated PMU Unit in the SoC collects the events
per CPU cluster, which includes all 4 available cores. Because of this individual cores
cannot be isolated and the data needed for the dual-core model cannot be collected.
When tested on the platform their single-core model performed quite poorly on both
the Cortex-A15 and Cortex-A7 with average error above 25%. This is mainly due to the
use of of cache-related events in their model and their high variability, especially on the
multi-thread configurations.

PCPU =α0 +α1 × INST_RETIRED
CPU_CY CLES

+α2 × (L1I_CACHE_REFILL+L1D_CACHE_REFILL)

+α3 ×L2D_CACHE_REFILL

(6.3)

In addition to all the published models comparison is also done against the single-thread
model as described in section 5 . Figure 6.5 and Table 6.4 clearly showcase that having a
specifically trained model for the multi-thread case definitely improves accuracy. Compared
to the related work the model still performs best, with Walker et al [62], labelled as equation
code (3), coming in at a close second for the Cortex-A15. This again solidifies the result that
automatic search methods definitely improve the accuracy of PMU based models. However
due to the high complexity of multi-thread systems and the limited number of performance
event counters available through the PMU the resulting models might not be accurate enough
for the purposes of power prediction in real-time. Despite this the PMU based intra-core

97

CHAPTER 6. MULTI-THREAD MODELS

models can approximate average power for a given workload quite accurately and have an
advantage to just using a physical characteristic like CPU frequency.

(a) ARM Cortex-A15 Models (b) ARM Cortex-A7 Models

Figure 6.5: Comparison between the generated per-frequency level multi-thread collected
model and other published work for both processor types on the ODROID XU3 board.
The models are generated and validated by the custom methodology using the PARSEC 3.0
workload for the two processor types on the ODROID XU3 development platform with the
eMMC card as OS driver. The Average Percent Error for the models at each available CPU
frequency over all system configurations is presented on the graph. The model references
corresponding to the legend are given in Table 6.4.

Table 6.4: Model reference and total average error for the data in Figure 6.5. The model
Reference is presented for each Model Code from the legend. Reported Average Error values are
taken from the related publication (when available). Total Average Error values are obtained for
each model on the two processor types (when available) by using their prediction error values
across all frequency levels and system configurations.

Model
Code

Reference
Reported Average Error Total Average Error

ARM C.-A15 ARM C.-A7 ARM C.-A15 ARM C.-A7
(1) Multi-Thread - - 9.03% 5.68%
(2) Single-Thread - - 13.93% 13.23%
(3) Walker 2.8% 3.8% 9.79% -
(4) Pricopi 1.2% - 30.56% -
(5) Rethinagiri 2.4% 1.24% 27.74% 37.51%

6.4 Summary of results

This chapter shows how the work from the previous Chapter 5 is advanced and the method-
ology is adapted for multi-thread power model generation on the ODROID XU3 board. It is
demonstrated that despite the great success achieved with the single-thread case, the system
behaviour in the multi-thread scenario is much more complex.

Several different system configurations and models have been explored in addition to two
extra methods for automatic event selection, namely top-down and exhaustive search, in order

98

6.4. SUMMARY OF RESULTS

to further improve model accuracy. Unfortunately the outcome is that the produced models for
the ARM Cortex-A15 do not meet the target accuracy requirement for use in real-time. Despite
this the generated models are compared to related work using the methodology and they still
outperform them. This indicates that multi-thread power modelling for big.LITTLE has not
been completely solved. Some possible solutions to improving the model for the Cortex-A15
are identified, but due to the limited time-frame of this project have not been pursued and are
left as future work.

99

C
H

A
P

T
E

R

7
HETEROGENEOUS MODELS

In this chapter the intra-core models in sections 5 and 6 are extended in order to be
able to predict the average power between the two CPU core types - the ARM Cortex-
A15 and ARM Cortex-A7 on the ODROID XU3 board. These new types of models are

named inter-core. Their function is to use the PMU events from one CPU cluster in order to
predict the average power on the other cluster. The justification for this is to explore power
models for heterogeneous systems and see if they can possibly be extended to power-aware
schedulers. Current scheduling for the big.LITTLE system includes thread migration based on
CPU utilisation percentage and CPU temperature. To the researcher’s knowledge there is no
other solution that utilises PMU events to predict average power.

Section 7.1 further develops this concept and introduces the key techniques to developing
these models. It also gives an example scenario in order to illustrate their use and significance.

Afterwards Sections 7.2 and 7.3 detail the developed single-thread and multi-thread inter-
core models and highlight their excellent performance.

Section 7.4 describes the research collaboration with Federal University of Rio Grande do
Norte in Brazil. In this work their own type of heterogeneous models, which use a different
type of mathematical expression and are not PMU event-based, are generated and validated
using the adapted methodology on the ODROID XU3 board. This demonstrates that the
developed approach is highly configurable and reliable.

7.1 Model purpose and significance

The basis of the models is calculating the Event Scaling Factors used in the intra-core models,
but between the events of the two CPU clusters. Equations 7.1 and 5.19 are extended in order
to showcase how this approach applies to the inter-core models. Equation 7.1 demonstrates

100

7.1. MODEL PURPOSE AND SIGNIFICANCE

how the Event Scaling Factors factors are computed for event ev between core_A and core_B

by using the mean values of the data samples. Equation 7.2 gives details on how to use the
Cortex-A7(LITTLE) PMU events to predict the average power for the Cortex-A15(big). Figure
7.1 gives a theoretical example of how the heterogeneous models can be used to guide a power
aware scheduler. The models are specifically designed to identify the most energy efficient
system configuration at runtime, using information from only one of the processing clusters.

The models are generated in three steps. First the data from the train set from both CPU
clusters is used to compute the Event Scaling Factors. Then the target CPU cluster train set
is used to compute the power model using the selected PMU events. Finally the scaled PMU
events from the test set of the initial CPU cluster are used in the computed power model. In
order to evaluate the model accuracy, the model error, using the scaled events, is compared
against the average power from the test set for the target CPU cluster. This is because there is
no equivalent sensor reading for the sample power of the other CPU cluster for the events of
the initial cluster.

Figure 7.1: Example usage of the heterogeneous models as a guide to a power-aware sched-
uler. In this example the information from the power models is used to guide the OS scheduler.
The workload is initially executed on 3 ARM Cortex-A15 cores. The model uses PMU event
samples from the execution on the Cortex-A15 cluster to determine the CPU power usage
for the Cortex-A7 cluster. It determines that the workload can run more efficiently on the
Cortex-A7 cluster and the OS scheduler uses this information to migrate the workload threads.

For the models only the common events available to both the Cortex-A7 PMU and the
Cortex-A15 PMU are used. This means the optimal models identified previously are not reused,
but instead OLS is used to refit and validate specific dedicated inter-core models for both
single-thread and multi-thread cases. A narrow list of 17 common PMU events between the
Cortex-A15 and the Cortex-A7 is used, which is taken from the analysed list of low-variability
events, used in Section 5.7. As with the per-frequency and intra-core models CPU_CYCLES is

101

CHAPTER 7. HETEROGENEOUS MODELS

the base event used in the model generation.

evcore_A

evcore_B
= evcore_A

evcore_B

evcore_A
evcore_B

evcore_A
= evcore_B (7.1)

evcore_B

evcore_A
= Event Scaling Factor

PCPU_big =α0 +α1 × ev1_LITTLE × ev1_big

ev1_LITTLE
+α2 × ev2_LITTLE × ev2_big

ev2_LITTLE

+ ...+αn × evn_LITTLE × evn_big

evn_LITTLE

(7.2)

Because of the nature of the inter-core model the events from any of the frequencies of one
CPU cluster are scalable to the events of any the frequencies the other CPU cluster, therefore
the models are able to predict between any two frequency levels. This explores the entire
transition space of the heterogeneous system.

7.2 Single-thread case

The same methodology used for the per-frequency intra-core models detailed in the previous
section is also used for the single-thread case. cBench is used as the workload with the
benchmark split same as Appendix B.2. The same bottom-up automatic search algorithm that
was identified to be the most optimal in Section 6.2 is used on the list of common PMU events.
Equation 7.3 and 7.4 list the identified optimal events for the LITTLE to big and big to LITTLE
models respectively. It is interesting to note that more events are needed from the LITTLE core
to predict the power of the big core than vice versa. The events are quite different between the
two situations and different from the per-frequency single-thread model.

PCPU_A15 =α0 +α1 ×CPU_CY CLES_A7 ×
CPU_CY CLES_A15

CPU_CY CLES_A7

+α2 ×EXCEPTION_RETURN_A7 ×
EXCEPTION_RETURN_A15

EXCEPTION_RETURN_A7

+α3 ×BRANCH_MISPRED_A7 ×
BRANCH_MISPRED_A15

BRANCH_MISPRED_A7

+α4 ×L2D_CACHE_WB_A7 ×
L2D_CACHE_WB_A15

L2D_CACHE_WB_A7

+α5 ×BUS_ACCESS_A7 ×
BUS_ACCESS_A15

BUS_ACCESS_A7

(7.3)

102

7.2. SINGLE-THREAD CASE

PCPU_A7 =α0 +α1 ×CPU_CY CLES_A15 ×
CPU_CY CLES_A7

CPU_CY CLES_A15

+α2 ×L1I_CACHE_ACCESS_A15 ×
L1I_CACHE_ACCESS_A7

L1I_CACHE_ACCESS_A15

+α3 ×BRANCH_PRED_A15 ×
BRANCH_PRED_A7

BRANCH_PRED_A15

(7.4)

The results from the methodology are detailed in Figure 7.2 and Table 7.1. It can be seen that
the models perform quite well for their scenarios with the average error being very low. Bear
in mind this is due to the fact that the models are only validated against the average power for
the test set, so some variation, which can influence the model, is lost. However this simplified
model can be successfully used to predict average power at frequency level. This can be used
in a scheduling algorithm, where the decision to switch between the different processors of
the heterogeneous system can be influenced by the coarse power model. The models have the
ability to predict the average power from the events between any two frequencies of the two
cores, due to the event scaling technique. The reported error percent number is the average
of all the many to one predictions for that frequency of the target CPU cluster. This means
that the ability to predict the average power of the target CPU is measured from all possible
points. For example, the reported error for 1.4 GHz for the Cortex-A7 is the average of the
model errors from using the scaled Cortex-A15 PMU events at 0.2, 0.3, 0.4 ... to 2.0 GHz, so
its an average of 18 numbers. The models achieve less than 1% average error in the validated
final model for both inter-core single-thread situations, which is more than satisfactory.

(a) LITTLE to big Models (b) big to LITTLE Models

Figure 7.2: Comparison between the generated per-frequency level single-thread inter-core
Automatic and Collected models for both processor transition types on the ODROID XU3
board. The models are generated and validated by the custom methodology using the cBench
workload for the two processor transition types on the ODROID XU3 development platform
with the eMMC card as OS driver. The Average Percent Error at each available CPU frequency
for the models is presented on the graph. The model references corresponding to the legend
are given in Table 7.1.

103

CHAPTER 7. HETEROGENEOUS MODELS

Table 7.1: Model reference and total average error for the data in Figure 7.2. The model
Reference is presented for each Model Code from the legend. Total Average Error values are
obtained for each model on the two processor types (when available) by using their prediction
error values across all frequency levels.

Model
Code

Reference
Total Average Error

LITTLE to big big to LITTLE
(1) Automatic 0.53% 0.72%
(2) Collected 0.60% 0.69%

7.3 Multi-thread case

Several key milestones have been accomplished during this research with the main focus being
the development of a robust methodology to generate accurate run-time power models on a
heterogeneous system. In order to demonstrate the effectiveness of the unique approach to
modelling custom power-models have been developed and their results have been compared
to other published work. The main focus is using PMU events and OLS linear regression
to try and capture system behaviour. This approach has been proven to be effective in non-
heterogeneous systems before for various other architectures. This means that the methodology
can be adapted to another architecture and a different set of system events, but the underlying
methods would still work well.

Continuing from the previous work, described in Nikov et al [21], the per-frequency level
power models are further developed and it is demonstrated how they can be used to predict
the average power with coarse sampling granularity between any two CPU frequencies. The
previous single-thread workload and the ODROID-XU3 development platform are reused, but
drastically improve the methodology by using control tools that greatly reduce measurement
overhead and platform variability. The full list of available PMU events is also explored for the
model and automatic search algorithms are also used to identify the best possible models for
the two CPU core types of the platform. Afterwards a parallel workload is modified and used
with the improved methodology to develop models for the multi-thread case. Fine system
control mechanisms are used to explore all available scenarios (1 core, 2 cores, 3 cores and 4
cores) in order to identify the best model that fits all of them. Several different optimisation
criteria for the power model are also explored, including standard deviation of the model error
as well as PMU event cross correlation. A key limitation with the PMU event based model has
been identified reducing its accuracy for the multi-thread case.

The most interesting contribution of this work, however is the unique approach to exploit-
ing the capabilities of a heterogeneous system. Power models have been developed that use
the PMU events of one CPU core type to predict the average power of another. This is tested
on the platform with good success, achieving less than 5% error even for the multi-thread case.
However, this is done with sacrificed real-time usability, since fewer measurements are used to

104

7.3. MULTI-THREAD CASE

test the model. This model is designed only to give a general prediction of the average power,
instead of at small intervals like the per-frequency runtime models.

This work offers some key insights into predicting the behaviour of modern heterogeneous
systems and can serve as a stepping stone for further research into intelligent advanced power-
aware scheduling. It is believed that this work can help solve the issue with energy efficiency
in the Mobile and IoT industry.

The multi-thread inter-core model uses the same ideas from the single-thread case as
described in the previous section, but with the multi-thread workload and core configuration
specifics. The same PARSEC 3.0 train and test set split is used in addition to reusing the same
technique of isolating the 1 core, 2 cores, 3 cores and 4 Cores situations. For the construction
of the model the bottom-up automatic search algorithm is used, like in the previous Section
7.2. The data from all 4 core configurations is used as one big set, so one set of events and
coefficients are obtained for each frequency level. It is noted that the generated models use the
num_cores event of either the target core or the core the PMU events are collected from. In
the situation where testing is done using all possible core configuration and only the average
error of all situations is of interest, then just using the number of enabled cores of the origin
core, for which the PMU events are collected, is sufficient. However in a specialised case where
predicting from a specific scenario is required, the scaled events from the initial core and the
number of enabled cores (for the scenario being tested) of the target core will need to be used.
This is the only intricate part of the inter-core multi-thread models. Equations 7.5 and 7.6
detail the finalized models for the LITTLE to big and big to LITTLE scenario respectively.

PCPU_A15 =α0 +α1 ×num_cores_A7/num_cores_A15

+α2 ×CPU_CY CLES_A7 ×
CPU_CY CLES_A15

CPU_CY CLES_A7

+α3 ×EXCEPTION_T AKEN_A7 ×
EXCEPTION_T AKEN_A15

EXCEPTION_T AKEN_A7

+α4 ×L2D_CACHE_WB_A7 ×
L2D_CACHE_WB_A15

L2D_CACHE_WB_A7

+α5 ×BRANCH_MISPRED_A7 ×
BRANCH_MISPRED_A15

BRANCH_MISPRED_A7

+α6 ×EXCEPTION_RETURN_A7 ×
EXCEPTION_RETURN_A15

EXCEPTION_RETURN_A7

(7.5)

105

CHAPTER 7. HETEROGENEOUS MODELS

PCPU_A7 =α0 +α1 ×num_cores_A15/num_cores_A7

+α2 ×CPU_CY CLES_A15 ×
CPU_CY CLES_A7

CPU_CY CLES_A15

+α3 ×EXCEPTION_T AKEN_A15 ×
EXCEPTION_T AKEN_A7

EXCEPTION_T AKEN_A15

+α4 ×EXCEPTION_RETURN_A15 ×
EXCEPTION_RETURN_A7

EXCEPTION_RETURN_A15

(7.6)

(a) LITTLE to big Models (b) big to LITTLE models

Figure 7.3: Comparison between the generated per-frequency level multi-thread inter-core
Automatic, Collected and Single-Thread Events models for both processor transition types
on the ODROID XU3 board. The models are generated and validated by the custom method-
ology using the PARSEC 3.0 workload for the two processor transition types on the ODROID
XU3 development platform with the eMMC card as OS driver. The Average Percent Error for
the models at each available CPU frequency over all system configurations is presented on the
graph. The model references corresponding to the legend are given in Table 7.2.

Table 7.2: Model reference and total average error for the data in Figure 7.3. The model
Reference is presented for each Model Code from the legend. Total Average Error values are
obtained for each model on the two processor types (when available) by using their prediction
error values across all frequency levels and system configurations.

Model
Code

Reference
Total Average Error

LITTLE to big big to LITTLE
(1) Automatic 4.94% 1.85%
(2) Collected 2.39% 1.62%
(3) Single-Thread Events 10.20% 3.47%

The resulting model equations are validated and compared against the model events
identified in the single-thread case. The results are presented in Figure 7.3 and Table 7.2. It is
evident that for the multi-thread case, dedicated specific models have a much better accuracy
that just reusing the events for the inter-core single-thread models. It can also be noted that
the validated model performs better than the one computed from the concatenated events. In
contrast to the per-frequency and intra-core models in previous chapters, collecting the PMU

106

7.4. COLLABORATION

events concurrently on the hardware results in a smoother graph. This is a result of the better
mapping of the PMU samples to the power sensor samples in the coarse-grained models due
to lower variation. The multi-thread inter-core models are accurate enough to distinguish
between the different energy levels successfully, so the coarser granularity in this case helps
improve the results of the multi-thread per-frequency and intra-core models in Section 6.2. It
can be observed that it is harder to predict the Cortex-A15 power from the Cortex-A7 PMU
events that the other way around, since the Cortex-A15 has a much wider power range and
requires more than the available 5 PMU event registers to fully capture that. Overall the
performance of the heterogeneous models is quite satisfactory with both the single-thread and
the multi-thread ones having low enough error to facilitate a possible use in a PMU event
based power-aware scheduler.

7.4 Collaboration

The final part of this research consists of a collaboration with researchers from Federal Univer-
sity of Rio Grande do Norte in Brazil. This is part of an ongoing two-year joint project between
university of Bristol and Universidade Federal do Rio Grande do Norte exploring energy effi-
ciency in parallel systems. They have developed a purely mathematical model describing the
relationship between the two core types, which can be used to predict the energy consumption
at different energy levels. The developed methodology on the ODROID-XU3 platform was
proposed in order to validate their methods.

The aim is to try and predict the behaviour of the system with all 8 CPU cores working at
the same time. Since the CPU consists of two clusters, each using a different type of CPU core
and operating at different frequencies. The initial difficulty was to identify a workload that
will scale for the two types of cores. This is essential, since just using a standard heterogeneous
workload causes the faster Cortex-A15 CPU cores to wait for the Cortex-A7 CPU cores to finish.
This resulted in hardly any improvement compared to just using the Cortex-A15, despite 4
more CPU cores being utilised. In the end a modified version of a suitable benchmark from
the PARSEC 3.0 workload was optimised for dynamic heterogeneous workloads, namely
parsec.blackscholes. The energy/frequency relationship for the two benchmarks used for the
experiment can be found on Appendix E. The same non-linear relationship, observed in the
research experiments with cBench and PARSEC 3.0, is clearly present, but this time with respect
to changing the frequency of the two CPU core clusters independently. This provides another
strong point in favour of complex power models. The resulting performance and energy model
is validated using coarse measurements, one for each frequency level per benchmark. The data
is presented in Figure 7.4. Overall, the model performance is satisfactory with 1.6% prediction
error for the performance and 4.6% prediction error for the energy consumption model.

This work has been presented as The energy consumption benefits of DynamIQ for heterogeneous

107

CHAPTER 7. HETEROGENEOUS MODELS

parallel workloads [22] at ARM Research Summit 2017. Further details about the mathematical
expressions and calibration methodology are contained in the poster document.

Figure 7.4: Performance of the generated heterogeneous workload execution time and CPU
energy models on the ODROID XU3 board. The models are generated and validated by the
custom methodology using a modified parsec.blackscholes benchmark as workload for all eight
cores working at the same time on the ODROID XU3 development platform with the eMMC
card as OS driver. The data presented is the measured and estimated workload Execution time
and CPU Energy. The presented estimated values are the predictions of the custom generated
models for various frequency pairs of the two processing clusters.

7.5 Summary of Results

This chapter describes the most significant contribution of this research, namely the develop-
ment of the per-frequency intra-core power models. These models can predict average power
between processing clusters. A modified version of the PMU event scaling technique from
chapter 5 is used in order to achieve this. The models can only predict power at a coarse level,
but it is argued that these models serve as a general guide to the most optimal energy level for
switching. Once the task has been migrated the runtime per-frequency models can be used
again. The key concepts and principles are demonstrated thoroughly. The generated models
for the single-thread and multi-thread cases are also presented in detail.

The recent collaboration with Federal University of Rio Grande do Norte is also outlined.

108

7.5. SUMMARY OF RESULTS

Their mathematical multi-core model is validated on the ODROID XU3 platform using the
developed methodology. This shows that the developed workflow is not constrained to just
one type of modelling, but is flexible enough to b used in a different context.

109

C
H

A
P

T
E

R

8
CONCLUSIONS

The final chapter in this thesis summarises the primary objectives of this work in Section
8.1. The next Section 8.2 lists the 6 key research outcomes and contributions to the field
of power modelling. An outline for continuation of this research is also presented in

Section 8.3, highlighting any outstanding problems and milestones as future work. The final
remarks of the researcher are included in the closing Section 8.4.

8.1 Summary of research objectives

The complicated energy demands of the Mobile industry offer ample research objectives,
thus drawing in many researchers. Literature survey has identified many contributions out
there that propose possible solutions for improving device energy efficiency, however most of
them are very niche and are not suitable for widespread adoption. A commercially available
approach for solving the increasing performance demand, while still considering energy
efficiency are heterogeneous embedded platforms. An already established solution is the ARM
big.LITTLE SoC which combines a high-performance processor with a power-efficient one,
connected via a Cache Coherent Interconnect. This allows quick dynamic task migration to
adjust the system performance based on demand while minimising energy consumption. Such
heterogeneous computing techniques are nothing new, but applying them to the embedded
market seems to be the way forward.

This research is aimed at evaluating big.LITTLE as a platform for energy-efficient computing.
The existing software scheduler, developed by ARM for the system, relies on CPU utilisation
thresholds to identify when to migrate tasks between the two processors. It is argued that a
dedicated scheduler which optimises energy usage metrics can achieve better power efficiency

110

8.2. KEY CONTRIBUTIONS

and utilisation of the system capabilities.
This work investigates possible approaches and identifies that hardware performance

counter-based power models can provide the necessary metrics that can help guide at run-time
such a novel scheduler. From this point on this work involves developing a methodology for
fitting and validation of PMU-based power models on big.LITTLE platforms. After comparing
the initial work to other relevant power models, it was concluded that there is no one-size-
fits-all solution, so the key objective becomes to make the proposed methodology robust,
yet flexible enough to be applicable to all possible scenarios. Therefore, the workloads, the
model generation algorithms and even the experiment data collection scripts can be easily
reconfigured.

In order to validate the methodology a number of accurate power models have been
produced and thoroughly compared against the state-of-the-art. Novel techniques were used
to develop models that are able to capture the heterogeneous behaviour of the platform by
predicting the average power of one core, while using the PMU events of the other. These
models can be utilised to improve the big.LITTLE heterogeneous software scheduler, which
remains an area of future work.

8.2 Key contributions

This research has achieved several critical milestone, both in terms of the developed methodol-
ogy as well as the validated power models. A list of the most important contributions is given
below:

Accurate runtime per-frequency models - The first breakthrough was achieved when it was
realized that by computing individual model coefficients for each frequency level the
model accuracy improved significantly. This is due to the fact that the PMU events
used for model generation can vary greatly between energy levels. Restricting these
allows the linear regression algorithm to fit a much tighter set of data. This allowed
the developed models to go from 25% and 20% down to 8% and 4% average error on
the ARM Cortex-A15 and ARM Cortex-A7 processor respectively. These models we
subsequently compared to other related work on big.LITTLE and found to be more
accurate.

Automated model generation using custom algorithms - The second milestone is the adop-
tion of automated techniques to try and improve the models even further. To achieve
this an advanced method of collecting the system information and then combining the
experiment data in one big data set was developed. Several different machine learning
algorithms and optimisation criteria, such as event cross-correlation were studied. It is
shown that automated approaches, though more difficult to implement initially, greatly
outperform traditional intuitive techniques for PMU event selection.

111

CHAPTER 8. CONCLUSIONS

Critical analysis of platform variability - During the course of this research factors contribut-
ing to variability of platform energy consumption and performance were also explored.
Manufacturing process can vary greatly between different die implementations of the
same SoC, which can impact power consumption significantly. Other factors were also
studied, such as differences in the types of flash memory cards, commonly used in ES.
This knowledge was used to minimize the utilized development platform incongruity to
around 1% average power variance between experiment runs.

Evaluation of single-thread and multi-thread power models - Single and multi-thread use
cases were independently analysed and the results were compared. Using the latest
optimisation techniques developed in this research, models with less than 3% average
error for the single-thread case were designed. However it was identified that the multi-
threaded scenario is much more complicated resulting in an error of between 9% and
6% on the Cortex-A15 and Cortex-A7 respectively. Analysis indicates that the limited
number of PMU event counters available for the big.LITTLE platform are not sufficient to
capture multi-thread behaviour on the ARM Cortex-A15. This is in contrast to a number
of published models, which claim very high accuracy using PMU events, specifically on
multi-thread platforms. The author is confident in the rigorousness of the proposed ap-
proach and willing to challenge the existing notion that multi-threaded power modelling
for the big.LITTLE platform has been solved.

Intra and inter-core power models - A specific technique to scale PMU events for use in
model equations was developed. The key principle was to use the initial per-frequency
level models to obtain average power information for any frequency level by using the
PMU events collected at run-time, scaling them and inserting them in the model equation
of the target frequency level. This is a way to show that the models can be used for
DVFS on the same processor type, by reusing the same PMU event sample to obtain
estimations of the average CPU power at all frequency levels. This information can be
used to identify the most optimal CPU frequency for efficient task execution and apply
DVFS. Due to the nature of the technique, the scaled events are able to approximate
the average power for the target frequency, in contrast to the per-frequency models,
which can predict dynamic power at every PMU event sample interval. Because the
granularity of the prediction is coarse, providing only a single value for a frequency
level, a prediction error for average power of around 1% for both for the single-thread
and multi-thread case was achieved. These models are called intra-core, because of the
ability to predict average power between the frequency levels of the same processing
core type. Afterwards this technique was extended to scale the PMU events of the two
processor types on the big.LITTLE SoC. Distinct models were trained to use runtime
information from one cluster to predict the workload behaviour of the other. This is
also done at a very coarse estimation of average power for every frequency level, so it

112

8.3. FUTURE WORK

only serves as a rough guide. The results show model error at 1% for the single-thread
case and around 2% for the multi-thread case. The models are identified as inter-core,
because of the ability to predict average power between the two processing core types. In
contrast to the intra-core models which reuse the PMU events and coefficients of the per-
frequency models, the inter-core models are fitted using a list of common PMU events
for both processor types on the big.LITTLE platform using the developed automated
search algorithms, resulting in completely different models.

Methodology flexibility and reconfigurability - Finally the flexibility and reconfigurability
of the methodology was demonstrated though a collaboration with Federal University
of Rio Grande do Norte in Brazil, in which their multi-core models were validated
using the developed approach on the HARDKERNEL ODROID-XU3 platform. The
researchers use a mathematical approach to derive the energy usage and performance of
the whole system and report 1.6% prediction error for performance and 4.6% error for
energy consumption. This shows the researched methodology is not constrained to just
PMU-based power modelling, but can be adjusted to other scenarios.

8.3 Future work

The most obvious continuation avenue of this work is the extension of the intra and inter-core
power models into a power-aware scheduling solution for big.LITTLE. The models have been
designed to be quick and responsive and to provide usable information in the context of
scheduling. This research has given some examples of how the models can be extended for
different scenarios.

There are also quite a few interesting questions that have been left unanswered during this
research. The possibility of revisiting the multi-thread case and identifying how to improve
model accuracy is the most obvious one. A possible approach is to use specific mechanistic
information of the platform, such as pipeline depth and other architectural details to provide
even more information to the model. Other research has shown that this approach is effective
[55] [58], but it comes at the cost of increased model complexity and platform specificity.
Another argument would be to extend the ARM PMU for future big.LITTLE implementations
and allow for the collection of more counters concurrently. In addition, research could be
directed towards adding support for specific energy-usage-capturing events for the multi-
threaded scenario, not included in the current available list. This would require a very deep
understanding of the ARM architecture and heavy use of simulators to explore scenarios and
events.

Another interesting experiment to revisit would be to reproduce the platform variability
study with the more stable eMMC cards in an effort to produce a model that can capture the
platform variability successfully, perhaps with on-demand refitting. This would be beneficial

113

CHAPTER 8. CONCLUSIONS

in trying to develop a solution for the Mobile market, since the model would be able to adjust
itself and overcome manufacturing and platform variations that cause deviation in CPU energy
usage.

8.4 Final remarks

This work details four years of research in the area of power modelling and analysis for
the ARM big.LITTLE SoC. Initial success was found by using novel techniques to produce
accurate single-thread models for the HARDKERNEL ODROID-XU3 development platform.
Capturing of the multi-thread behaviour on the target board proved to be a much greater
challenge even when validating other published models, despite them having reported very
high accuracy. It seems there is no consistent metric for power modelling and any model can
look good under the right circumstances. It is understood that due to platform, workload
and technology variation a universal solution is not achievable at this moment. Therefore this
work has focused on developing a methodology and use the generated models as a case study,
rather than a definitive answer. Nevertheless the research has produced several highly accurate
models, including ones that can predict average CPU power using information between the
two processor types on the development board, which is a novel approach to power modelling
on HES. The methodology and techniques are designed to be extended to a power-aware
scheduler as a future continuation of this work.

114

A
P

P
E

N
D

I
X

A
AVAILABLE PMU EVENTS FOR THE big.LITTLE SYSTEM

Event Name
Raw ID

Cortex-A15 Cortex-A7
SW_INCR r000 r000

L1I_CACHE_REFILL r001 r001

L1I_TLB_REFILL r002 r002

L1D_CACHE_REFILL r003 r003

L1D_CACHE_ACCESS r004 r004

L1D_TLB_REFILL r005 r005

DATA_READS - r006

DATA_WRITES - r007

INST_RETIRED r008 r008

EXCEPTION_TAKEN r009 r009

EXCEPTION_RETURN r00A r00A

CID_WRITE_RETIRED r00B r00B

SW_CHANGE_PC - r00C

IMMEDIATE_BRANCHES - r00D

PROCEDURE_RETURNS - r00E

UNALIGNED_LOAD_STORE - r00F

BRANCH_MISPRED r010 r010

CPU_CYCLES r011 r011

BRANCH_PRED r012 r012

DATA_MEM_ACCESS r013 r013

115

APPENDIX A. AVAILABLE PMU EVENTS FOR THE BIG.LITTLE SYSTEM

Event Name
Raw ID

Cortex-A15 Cortex-A7
L1I_CACHE_ACCESS r014 r014

L1D_CACHE_WB r015 r015

L2D_CACHE_ACCESS r016 r016

L2D_CACHE_REFILL r017 r017

L2D_CACHE_WB r018 r018

BUS_ACCESS r019 r019

LOCAL_MEMORY_ERROR r01A -

INST_SPEC_EXEC r01B -

TTBR_WRITE_RETIRED r01C -

BUS_CYCLES r01D r01D

L1D_READ_ACCESS r040 -

L1D_WRITE_ACCESS r041 -

L1D_READ_REFILL r042 -

L1D_WRITE_REFILL r043 -

L1D_WB_VICTIM r046 -

L1D_WB_CLEAN_COHERENCY r047 -

L1D_INVALIDATE r048 -

L1D_TLB_READ_REFILL r04C -

L1D_TLB_WRITE_REFILL r04D -

L2D_READ_ACCESS r050 -

L2D_WRITE_ACCESS r051 -

L2D_READ_REFILL r052 -

L2D_WRITE_REFILL r053 -

L2D_WB_VICTIM r056 -

L2D_WB_CLEAN_COHERENCY r057 -

L2D_INVALIDATE r058 -

BUS_READ_ACCESS r060 r060

BUS_WRITE_ACCESS r061 r061

BUS_NORMAL_ACCESS r062 -

BUS_NOT_NORMAL_ACCESS r063 -

BUS_NORMAL_ACCESS_2 r064 -

BUS_PERIPH_ACCESS r065 -

DATA_MEM_READ_ACCESS r066 -

DATA_MEM_WRITE_ACCESS r067 -

UNALIGNED_READ_ACCESS r068 -

116

Event Name
Raw ID

Cortex-A15 Cortex-A7
UNALIGNED_WRITE_ACCESS r069 -

UNALIGNED_ACCESS r06A -

INST_SPEC_EXEC_LDREX r06C -

INST_SPEC_EXEC_STREX_PASS r06D -

INST_SPEC_EXEC_STREX_FAIL r06E -

INST_SPEC_EXEC_LOAD r070 -

INST_SPEC_EXEC_STORE r071 -

INST_SPEC_EXEC_LOAD_STORE r072 -

INST_SPEC_EXEC_INTEGER_INST r073 -

INST_SPEC_EXEC_SIMD r074 -

INST_SPEC_EXEC_VFP r075 -

INST_SPEC_EXEC_SOFT_PC r076 -

BRANCH_SPEC_EXEC_IMM_BRANCH r078 -

BRANCH_SPEC_EXEC_RET r079 -

BRANCH_SPEC_EXEC_IND r07A -

BARRIER_SPEC_EXEC_ISB r07C -

BARRIER_SPEC_EXEC_DSB r07D -

BARRIER_SPEC_EXEC_DMB r07E -

IRQ_EXCEPTION_TAKEN - r086

FIQ_EXCEPTION_TAKEN - r087

EXTERNAL_MEMORY_REQUEST - r0C0

NONCACHE_EXTERNAL_MEMORY_REQUEST - r0C1

PREFETCH_LINEFILL - r0C2

PREFETCH_LINEFILL_DROPPED - r0C3

ENTERING_READ_ALLOC - r0C4

READ_ALLOC - r0C5

Reserved - r0C6

ETM_EXT_OUT_0 - r0C7

ETM_EXT_OUT_1 - r0C8

DATA_WRITE_STALL - r0C9

DATA_SNOOPED - r0CA

117

A
P

P
E

N
D

I
X

B
POWER MODELLING WORKLOADS TRAIN TEST SET SPLITS

B.1 cBench Initial Partial Uneven Workset Split

Train Set Test Set

Benchmarks

automotive_qsort1 automotive_bitcount
automotive_susan_c bzip2d
automotive_susan_e consumer_jpeg_c
automotive_susan_s network_dijkstra
bzip2e office_ghostscript
consumer_jpeg_d security_blowfish_d
consumer_tiff2bw telecom_adpcm_c
consumer_tiff2rgba
consumer_tiffdither
consumer_tiffmedian
network_patricia
office_ispell
office_rsynth
office_stringsearch1
security_blowfish_e
security_pgp_d
security_pgp_e
security_rijndael_d
security_rijndael_e
security_sha

118

B.3. PARSEC WORKSET SPLIT

Train Set Test Set
telecom_adpcm_d
telecom_CRC32
telecom_gsm

B.2 cBench Workset Split

Train Set Test Set

Benchmarks

telecom_CRC32 consumer_jpeg_d
consumer_tiffdither security_blowfish_e
telecom_gsm security_pgp_d
bzip2d office_ghostscript
consumer_tiffmedian network_dijkstra
consumer_jpeg_c security_blowfish_d
office_stringsearch1 automotive_susan_e
office_ispell automotive_qsort1
automotive_susan_s automotive_bitcount
security_pgp_e security_rijndael_e
telecom_adpcm_d telecom_adpcm_c
automotive_susan_c bzip2e
security_sha network_patricia
security_rijndael_d office_rsynth
consumer_tiff2rgba consumer_tiff2bw

B.3 PARSEC Workset Split

Train Set Test Set

Benchmarks

parsec.facesim parsec.dedup
splash2x.radiosity parsec.freqmine
splash2x.raytrace parsec.streamcluster

splash2x.water_nsquared
splash2x.barnes
splash2x.fmm

119

A
P

P
E

N
D

I
X

C
PSEUDOCODE SAMPLES

C.1 Experiment Data Concatenation

1: procedure DATACAT(F1, F2, ..., FN)
2: F1Line,F2Line, ...FNLine ← 2 . First line of data file is column header, merging

starts from second line (first line with data).
3: while F1Line < EOFLine do . First file is used as synchronization anchor.
4: READ F1Run,F1Freq,F1Bench . The three synchronisation points. Only points

from the same stage of experiment can be merged.
5: for i in 2 to N do . Go through data files one at a time.
6: READ FiRun,FiFreq,FiBench . Extract synchronisation points at FiLine.
7: if F1Run!= FiRun then . Try and synchronise the experiment Run.
8: F1Sync ← READ next sync F1Line . Next F1Line at which Run matches.
9: FiSync ← READ next sync FiLine . Next FiLine at which Run matches.

10: if F1Sync = FiSync = NULL then
11: RETURN . If no possible synchronization, end procedure.
12: else if F1Sync = NULL then . If only FiSync found.
13: FiLine ← FiSync . Move FiLine pointer ahead.
14: BREAK . Break and synchronize next file.
15: else if FiSync = NULL then . If only F1S ync found.
16: F1Line ← F1Sync . Move F1Line pointer ahead.
17: BREAK . Break and synchronize next file.
18: else . Find pointer synchronization distance for both files.
19: F1Di f f ← F1S ync−F1Line
20: FiDi f f ← FiSync−FiLine
21: if F1Di f f < FiDi f f then . Find shortest synchronization distance.
22: F1Line ← F1Sync . If F1Sync shorter, move F1Line.
23: BREAK . Break and synchronize next file.

120

C.2. PER-FREQUENCY MODEL GENERATION

24: else
25: FiLine ← FiSync . If FiSync shorter, move FiLine.
26: BREAK . Break and synchronize next file.
27: end if
28: end if
29: end if
30: if F1Freq!= FiFreq then . After synchronizing data Run, do Freq.
31: ...
32: end if
33: if F1Bench!= FiBench then . After also synchronizing data Freq, do Bench.
34: ...
35: end if
36: end for
37: for i in 1 to N do
38: TempData ← READ FiData . Get synchronized data points from all files.
39: FiLine ← FiLine+1 READ FiData . Move data pointers to next sample.
40: end for
41: SyncData ← AVERAGE TempData . Average the physical data (temperature,

current, power) from synchronized files and concatenate the PMU events.
42: WRITE SyncData . Store processed data point.
43: end while
44: end procedure

C.2 Per-Frequency Model Generation

1: procedure PERFREQGEN(File1,FIle2,List)
2: READ FreqList from File1 . Extract FreqList from File1.
3: for F in FreqList do . Individual model fitting for every frequency in FreqList.
4: Train ← READ from File1 . Extract train set data from File1
5: Test ← READ from File2 . Extract test set data from File1
6: Model ← FIT(Train,F,List) . Fit model using event List on Train data.
7: Error ← VALIDATE (Test,F,Model) . Validate fitted model on Test data.
8: end for
9: ModelError ← AVERAGE Error . Final model performance metric is average Error

over all frequencies in FreqList.
10: RETURN ModelErrror
11: end procedure

121

APPENDIX C. PSEUDOCODE SAMPLES

C.3 Bottom-Up Automatic Event Selection

1: procedure BOTUPEVENTSEL(File1, File2, Pool,Num)
2: READ FreqList from File1 . Extract FreqList from File1.
3: List ← NULL . Initiate event List.
4: while Num > 0 do . Continue search until Num events reached.
5: EventAdd ← NULL . Improving event identifier EventAdd.
6: for TempEvent in Pool do . Search all events in Pool.
7: TempList ← List+TempEvent . Temporary event list TempList using all

events in List and event under test TempEvent.
8: for F in FreqList do . Use PerFreqGen to fit and validate model.
9: Train ← READ from File1

10: Test ← READ from File2
11: Model ← FIT(Train,F,TempList)
12: Erorr ← VALIDATE(Test,F,Model)
13: end for
14: TempError ← AVERAGE Error
15: if MinError = NULL then . Use first event metrics as initial reference.
16: EventAdd ← TempEvent
17: MinError ← TempError
18: else
19: if TempError < MinError then . Compare against stored metrics.
20: EventAdd ← TempEvent . Overwrite if tested event improves model.
21: MinError ← TempError
22: end if
23: end if
24: end for
25: if EventAdd 6= NULL then . After searching all events, look for new EventAdd.
26: List ← List+EventAdd . Add to final event List.
27: Pool ← Pool−EventAdd . Remove from event Pool.
28: Num ← Num−1 . Adjust event counter Num.
29: else
30: RETURN List . If no improving event, return existing list.
31: end if
32: end while
33: end procedure

122

C.4. TOP-DOWN AUTOMATIC EVENT SELECTION

C.4 Top-Down Automatic Event Selection

1: procedure TOPDOWNEVENTSEL(File1, File2, Pool,Num)
2: READ FreqList from File1 . Extract FreqList from File1.
3: for F in FreqList do . Use PerFreqGen to fit and validate model.
4: Train ← READ from File1
5: Test ← READ from File2
6: Model ← TRAIN(Train,F,Pool) . Starting model using all events in Pool.
7: Erorr ← TEST(Test,F,Model)
8: end for
9: TempError ← AVERAGE Error

10: MinError ← TempError . Use starting model metrics as initial reference.
11: List ← Pool . Initiate event List with all events in Pool.
12: while TRUE do . Initiate event search. Break condition is inside the loop.
13: EventRemove ← NULL . Improving event identifier EventRemove.
14: for TempEvent in Pool do . Search all the events in Pool.
15: TempList ← Pool−TempEvent . Temporary event list TempList using all

events in Pool except event under test EventRemove.
16: for F in FreqList do . Use PerFreqGen to fit and validate model.
17: ...
18: end for
19: TempError ← AVERAGE Error
20: if TempError < MinError then . Compare against stored metrics.
21: EventRemove ← TempEvent . Overwrite if tested event improves model.
22: MinError ← TempError
23: end if
24: end for
25: if EventRemove 6= NULL then . After searching all events, look for EventRemove
26: Pool ← Pool−EventRemove . Remove from Pool.
27: SizePool ← SIZE Pool . Recalculate Pool size.
28: if SizePool = Num then . Check Pool size.
29: List ← Pool . If Pool reaches Num, update and return List
30: RETURN List
31: end if . If Num not reached continue search.
32: else
33: List ← Pool . If no improving event, return Pool as List.
34: RETURN List
35: end if
36: end while
37: end procedure

123

APPENDIX C. PSEUDOCODE SAMPLES

C.5 Exhaustive Automatic Event Selection

1: procedure EXHEVENTSEL(File1, File2, Pool,Num)
2: READ FreqList from File1 . Extract FreqList from File1.
3: EventCombinations ← COMBINATIONS(Pool,Num) . Compute all combinations

of Num events from Pool.
4: for Count in EventCombinations do . Search all event combinations.
5: TempList ← EventCombinations[Count] . Temporary event list TempList using

events in EventCombinations[Count].
6: for F in FreqList do . Use PerFreqGen to fit and validate model.
7: ...
8: end for
9: TempError ← AVERAGE Error

10: if MinError = NULL then . Use first list metrics as initial reference.
11: MinError ← TempError
12: List ← TempList
13: else
14: if TempError < MinError then . Compare against stored metrics.
15: MinError ← TempError . Overwrite if tested events improve model.
16: List ← TempList
17: end if
18: end if
19: end for
20: RETURN List . After checking all combinations, return List.
21: end procedure

124

C.6. INTER-CORE MODEL GENERATION

C.6 Inter-Core Model Generation

1: procedure INTERCOREGEN(File1,FIle2,File3, File4,List)
2: READ FreqList1 from File1 . Extract FreqList1 from File1.
3: READ FreqList2 from File3 . Extract FreqList2 from File3.
4: for F2 in FreqList2 do . Outer loop is every target processor frequency.
5: for F1 in FreqList1 do . Inner loop is every origin processor frequency. Individual

model fitting for every frequency combination.
6: Train1← READ from File1 . Extract origin train set data from File1.
7: Test1← READ from File2 . Extract origin test set data from File2.
8: Train2← READ from File3 . Extract target train set data from File3.
9: Test2← READ from File4 . Extract target test set data from File4.

10: ESF ← CALCULATE(Train1,F1,Train2,F2) . Compute Event Scaling
Factors(ESF) using the origin and target train sets.

11: Model ← FIT(Train2,F2,List) . Fit model using event List on target processor
Train2 data.

12: F1Error ← VALIDATE(Test1,F1,Test2,F2,Coef f ,Model) . Validate fitted
model using origin processor Test1 events, scaled with ESF, on target Test2 data.

13: end for
14: F2Error ← AVERAGE F1Error . Intermediate model performance metric is

average F1Error over all origin processor frequencies in FreqList1 for target processor
frequency F2. Many to one relationship.

15: end for
16: ModelError ← AVERAGE F2Error . Final model performance metric is average

F2Error over all target processor frequencies in FreqList2. Many to many relationship.
17: RETURN ModelErrror
18: end procedure

125

A
P

P
E

N
D

I
X

D
POWER MODEL COEFFICIENTS

D.1 ODROID XU+E Cortex-A15 Power Model Coefficients

Model Constant Cycles Instructions CPI IPC CR CM

Full
2,91 -4,10E-12

Cycles

Full
2,95 -6,15E-12

Instructions

Full
2,89 -1,29E-01

CPI

Full
2,30 4,21E-01

IPC

Full
2,97 -1,73E-11

CR

Full
2,94 -2,93E-09

CM

Full

2,79 1,53E-01 -3,86E-12 -2,33E-09
IPC,
CR,
CM

Partial

2,77 1,73E-01 -5,65E-12 -2,11E-09
IPC,
CR,
CM

126

D.2. ODROID XU+E CORTEX-A7 POWER MODEL COEFFICIENTS

D.2 ODROID XU+E Cortex-A7 Power Model Coefficients

Model Constant Cycles Instructions CPI IPC CR CM

Full
0,10 -6,39E-14

Cycles

Full
0,10 -6,18E-14

Instructions

Full
0,10 -3,80E-03

CPI

Full
0,09 9,63E-03

IPC

Full
0,10 -1,55E-13

CR

Full
0,10 -3,54E-11

CM

Full

0,10 -7,50E-14 2,67E-13 -3,49E-11
Cycles,
CR,
CM

Full

0,10 -7,81E-14 9,87E-15 2,60E-13 -3,46E-11
Cycles,
Instructions,
CR,
CM

Full

0,10 -2,84E-04 4,84E-14 -3,72E-11
CPI,
CR,
CM

Partial

0,10 -6,58E-14 1,83E-13 -3,01E-11
Cycles,
CR,
CM

127

APPENDIX D. POWER MODEL COEFFICIENTS

D.3 Versatile Express with TC2 Cortex-A15 Power Model
Coefficients

Model Constant Cycles Instructions CPI IPC CR CM

Full
1,55 -2,56E-12

Cycles

Full
1,55 -3,02E-12

Instructions

Full
1,53 -7,49E-02

CPI

Full
1,20 2,33E-01

IPC

Full
1,73 -2,31E-11

CR

Full
1,59 -1,99E-09

CM

Full

1,59 8,21E-12 -2,63E-11 -1,36E-09
Instructions,
CR,
CM

Full

1,69 1,69E-02 -1,28E-11 -1,46E-09
IPC,
CR,
CM

Partial

1,59 1,22E-11 -4,10E-11 -8,71E-10
Instructions,
CR,
CM

D.4 Versatile Express with TC2 Cortex-A7 Power Model
Coefficients

Model Constant Cycles Instructions CPI IPC CR CM

Full
0,21 -6,89E-14

Cycles

Full
0,21 -6,54E-14

Instructions

128

D.5. ODROID-XU3 CORTEX-A15 SINGLE-THREAD POWER MODEL COEFFICIENTS

Model Constant Cycles Instructions CPI IPC CR CM

Full
0,21 -2,88E-03

CPI

Full
0,19 9,86E-03

IPC

Full
0,21 -4,33E-13

CR

Full
0,21 -4,32E-11

CM

Full

0,21 -4,95E-04 -1,09E-13 -4,01E-11
IPC,
CR,
CM

Full
0,21 -1,08E-13 -3,96E-11CR,

CM

Partial

0,21 -6,86E-03 -1,94E-13 -3,79E-11
IPC,
CR,
CM

Partial
0,20 -3,78E-11

CM

D.5 ODROID-XU3 Cortex-A15 Single-Thread Power Model
Coefficients

F. Constant r011 r014 r004 r01D r065 r079

2 1.45E+00 2.87E-07 1.23E-09 6.50E-10 -1.44E-06 -8.28E-06 8.94E-10

1.9 1.31E+00 -1.22E-07 1.06E-09 5.49E-10 6.08E-07 -9.27E-06 3.26E-09

1.8 1.13E+00 -3.10E-07 9.54E-10 5.01E-10 1.55E-06 -8.23E-06 1.93E-10

1.7 9.50E-01 -6.75E-08 8.62E-10 4.93E-10 2.70E-07 -5.48E-06 1.81E-09

1.6 8.40E-01 1.77E-08 8.09E-10 4.37E-10 -7.07E-08 -4.97E-06 1.30E-09

1.5 6.97E-01 -2.10E-07 7.62E-10 3.88E-10 8.41E-07 -2.71E-06 1.69E-09

1.4 6.59E-01 -1.12E-07 7.06E-10 3.89E-10 4.48E-07 -2.93E-06 8.86E-10

1.3 5.74E-01 -1.43E-07 6.93E-10 3.80E-10 4.28E-07 -2.13E-06 1.21E-09

1.2 4.27E-01 -1.54E-08 6.46E-10 3.70E-10 4.66E-08 1.04E-07 1.89E-09

1.1 3.46E-01 -2.10E-07 6.44E-10 3.03E-10 6.31E-07 9.50E-07 1.78E-09

129

APPENDIX D. POWER MODEL COEFFICIENTS

F. Constant r011 r014 r004 r01D r065 r079

1 2.71E-01 -5.93E-08 5.85E-10 3.30E-10 1.78E-07 1.71E-06 1.99E-09

0.9 2.78E-01 -5.38E-08 5.49E-10 3.17E-10 1.62E-07 6.12E-07 1.87E-09

0.8 2.31E-01 -3.13E-08 5.16E-10 2.99E-10 9.41E-08 8.82E-07 2.08E-09

0.7 2.19E-01 -3.18E-08 5.05E-10 2.95E-10 9.57E-08 7.05E-07 1.77E-09

0.6 1.90E-01 -2.96E-08 5.11E-10 2.98E-10 8.89E-08 8.87E-07 1.61E-09

0.5 1.68E-01 -1.94E-08 5.13E-10 2.95E-10 5.82E-08 1.15E-06 1.60E-09

0.4 1.52E-01 -2.40E-09 5.04E-10 2.96E-10 7.05E-09 1.78E-06 1.53E-09

0.3 9.94E-02 -1.09E-08 4.96E-10 2.94E-10 3.27E-08 5.06E-06 1.14E-09

0.2 8.07E-02 3.34E-09 4.83E-10 2.98E-10 -1.04E-08 5.48E-06 7.77E-10

D.6 ODROID-XU3 Cortex-A7 Single-Thread Power Model
Coefficients

F. Constant r011 r060 r017 r00F r01D

1.4 2.30E-01 -5.27E-08 -1.56E-08 3.72E-08 5.51E-09 2.11E-07

1.3 1.87E-01 1.00E-08 -1.42E-08 3.45E-08 8.69E-09 -2.98E-08

1.2 1.76E-01 2.25E-08 -1.28E-08 3.52E-08 6.17E-09 -6.74E-08

1.1 1.47E-01 1.25E-08 -1.13E-08 3.23E-08 6.46E-09 -3.73E-08

1 1.41E-01 -1.41E-08 -1.01E-08 2.78E-08 6.70E-09 4.23E-08

0.9 1.17E-01 -2.47E-08 -8.48E-09 2.36E-08 7.17E-09 7.40E-08

0.8 8.97E-02 2.37E-10 -7.38E-09 2.29E-08 6.47E-09 -6.58E-10

0.7 8.13E-02 -1.20E-09 -6.45E-09 2.13E-08 6.80E-09 3.58E-09

0.6 6.91E-02 -2.47E-09 -5.49E-09 1.91E-08 5.92E-09 7.34E-09

0.5 5.76E-02 5.77E-10 -4.74E-09 1.77E-08 6.18E-09 -1.85E-09

0.4 4.95E-02 5.51E-10 -4.11E-09 1.64E-08 5.70E-09 -1.80E-09

0.3 4.58E-02 1.82E-10 -4.35E-09 1.82E-08 5.22E-09 -8.43E-10

0.2 2.76E-02 4.37E-10 -3.56E-09 1.49E-08 3.63E-09 -1.50E-09

D.7 ODROID-XU3 Cortex-A15 Multithread Power Model
Coefficients

F. Constant Cores(#) r011 r040 r010 r07E r058 r078 r01D

1.8 5.98E-1 2.08E-1 9.38E-7 2.78E-10 -3.35E-8 -1.91E-7 1.76E-6 3.51E-9 -4.69E-6

1.7 5.02E-1 1.02E-1 7.71E-7 6.93E-10 -3.09E-8 -9.53E-8 -8.86E-6 2.47E-9 -3.08E-6

1.6 4.51E-1 5.72E-2 7.79E-7 2.40E-10 -2.67E-8 -9.63E-8 -9.22E-6 2.78E-9 -3.11E-6

130

D.8. ODROID-XU3 CORTEX-A7 MULTITHREAD POWER MODEL COEFFICIENTS

F. Constant Cores(#) r011 r040 r010 r07E r058 r078 r01D

1.5 4.11E-1 4.81E-2 3.88E-7 3.78E-10 -2.43E-8 -8.93E-8 -1.22E-5 2.25E-9 -1.55E-6

1.4 3.53E-1 7.79E-2 5.70E-7 2.44E-10 -2.61E-8 -1.14E-7 -6.77E-6 2.41E-9 -2.28E-6

1.3 3.15E-1 8.55E-2 8.06E-7 9.80E-11 -2.43E-8 -1.08E-7 -3.81E-6 2.40E-9 -2.42E-6

1.2 2.80E-1 6.98E-2 6.21E-7 1.85E-11 -2.42E-8 -1.04E-7 -1.64E-6 2.38E-9 -1.86E-6

1.1 2.47E-1 4.54E-2 4.76E-7 2.37E-10 -2.08E-8 -7.57E-8 -2.27E-6 1.83E-9 -1.42E-6

1 2.25E-1 5.67E-2 3.92E-7 -2.57E-10 -2.31E-8 -1.03E-7 -6.46E-6 2.49E-9 -1.17E-6

0.9 1.89E-1 2.45E-2 3.96E-7 -1.40E-10 -2.06E-8 -7.52E-8 -1.75E-6 2.12E-9 -1.19E-6

0.8 1.70E-1 2.93E-2 4.11E-7 -6.24E-11 -1.82E-8 -7.84E-8 -2.57E-6 1.76E-9 -1.23E-6

0.7 1.43E-1 2.58E-2 2.70E-7 1.48E-10 -1.76E-8 -6.45E-8 -2.27E-6 1.40E-9 -8.09E-7

0.6 1.25E-1 1.59E-2 1.77E-7 1.27E-10 -1.75E-8 -5.97E-8 -2.07E-6 1.40E-9 -5.30E-7

0.5 1.06E-1 1.16E-2 1.90E-7 2.38E-10 -1.67E-8 -5.41E-8 -1.27E-6 1.25E-9 -5.70E-7

0.4 8.18E-2 1.12E-2 1.07E-7 3.13E-10 -1.60E-8 -4.82E-8 -1.41E-6 1.07E-9 -3.19E-7

0.3 6.24E-2 3.82E-3 6.08E-8 4.20E-10 -1.59E-8 -3.65E-8 -4.52E-7 9.73E-10 -1.81E-7

0.2 4.38E-2 2.35E-3 1.44E-8 4.86E-10 -1.54E-8 -2.85E-8 -3.91E-7 9.02E-10 -4.15E-8

D.8 ODROID-XU3 Cortex-A7 Multithread Power Model
Coefficients

F. Constant Cores(#) r011 r014 r015 r006 r00D

1.4 9.54E-02 1.46E-02 9.30E-11 3.34E-10 2.56E-09 2.28E-10 -2.55E-10

1.3 8.04E-02 1.14E-02 8.38E-11 3.15E-10 2.80E-09 1.98E-10 -2.47E-10

1.2 6.79E-02 1.21E-02 7.72E-11 2.61E-10 2.07E-09 2.01E-10 -2.18E-10

1.1 5.89E-02 1.08E-02 7.23E-11 2.71E-10 2.21E-09 1.00E-10 -2.23E-10

1 5.03E-02 8.83E-03 6.98E-11 2.40E-10 1.97E-09 1.33E-10 -2.50E-10

0.9 4.08E-02 6.83E-03 6.79E-11 2.03E-10 1.82E-09 1.51E-10 -1.74E-10

0.8 3.07E-02 4.12E-03 6.92E-11 1.97E-10 1.68E-09 9.39E-11 -1.94E-10

0.7 2.38E-02 3.59E-03 6.52E-11 1.72E-10 1.66E-09 1.17E-10 -1.53E-10

0.6 1.72E-02 3.52E-03 6.08E-11 1.87E-10 1.85E-09 5.89E-11 -1.95E-10

0.5 1.31E-02 2.49E-03 6.10E-11 1.49E-10 1.55E-09 8.33E-11 -1.56E-10

0.4 1.08E-02 1.97E-03 6.59E-11 1.49E-10 1.60E-09 6.68E-11 -1.67E-10

0.3 8.60E-03 1.49E-03 7.00E-11 1.46E-10 1.62E-09 6.41E-11 -1.83E-10

0.2 6.10E-03 9.64E-04 7.90E-11 1.36E-10 1.60E-09 5.72E-11 -1.97E-10

131

APPENDIX D. POWER MODEL COEFFICIENTS

D.9 ODROID-XU3 Cortex-A15 Single-Thread Inter-Core Power
Model Coefficients

F. Constant r011 r00A r010 r018 r019

2 1.72E+00 5.02E-11 5.66E-06 4.47E-08 4.36E-06 -1.91E-07

1.9 1.38E+00 6.99E-11 5.21E-06 3.83E-08 3.23E-06 -1.43E-07

1.8 1.28E+00 -5.09E-11 4.21E-06 3.42E-08 3.26E-06 -1.42E-07

1.7 1.08E+00 1.28E-11 4.14E-06 3.19E-08 2.76E-06 -1.21E-07

1.6 1.01E+00 -6.45E-11 3.49E-06 2.90E-08 2.72E-06 -1.19E-07

1.5 9.69E-01 -1.87E-10 3.25E-06 2.65E-08 2.64E-06 -1.15E-07

1.4 9.20E-01 -2.61E-10 2.96E-06 2.54E-08 2.53E-06 -1.09E-07

1.3 8.57E-01 -2.80E-10 2.98E-06 2.36E-08 2.33E-06 -9.94E-08

1.2 6.80E-01 -1.41E-10 2.72E-06 2.17E-08 1.86E-06 -7.85E-08

1.1 5.24E-01 8.31E-12 2.80E-06 2.01E-08 1.24E-06 -5.19E-08

1 4.33E-01 5.35E-11 2.93E-06 1.78E-08 8.47E-07 -3.37E-08

0.9 3.71E-01 5.23E-11 2.72E-06 1.67E-08 6.82E-07 -2.66E-08

0.8 3.19E-01 3.53E-11 2.48E-06 1.57E-08 6.22E-07 -2.33E-08

0.7 2.95E-01 -2.57E-11 2.55E-06 1.51E-08 5.90E-07 -2.26E-08

0.6 2.34E-01 5.20E-11 2.65E-06 1.52E-08 4.63E-07 -1.71E-08

0.5 1.90E-01 8.85E-11 2.72E-06 1.48E-08 2.13E-07 -5.98E-09

0.4 1.38E-01 1.79E-10 2.57E-06 1.43E-08 6.63E-08 1.17E-09

0.3 9.34E-02 2.82E-10 2.50E-06 1.37E-08 -8.23E-08 8.33E-09

0.2 7.42E-02 2.17E-10 2.32E-06 1.37E-08 7.21E-10 5.57E-09

D.10 ODROID-XU3 Cortex-A7 Single-Thread Inter-Core Power
Model Coefficients

F. Constant r011 r014 r012

1.4 2.26E-01 -4.32E-11 3.79E-10 -3.20E-10

1.3 1.91E-01 -3.71E-11 3.66E-10 -3.43E-10

1.2 1.70E-01 -4.79E-11 3.20E-10 -3.16E-10

1.1 1.47E-01 -4.80E-11 2.99E-10 -3.02E-10

1 1.34E-01 -6.17E-11 2.79E-10 -3.21E-10

0.9 1.13E-01 -5.71E-11 2.54E-10 -3.06E-10

0.8 8.69E-02 -5.63E-11 2.29E-10 -2.85E-10

0.7 7.95E-02 -7.35E-11 2.10E-10 -2.85E-10

0.6 6.59E-02 -7.49E-11 1.85E-10 -2.54E-10

132

D.12. ODROID-XU3 CORTEX-A7 MULTITHREAD INTER-CORE POWER MODEL
COEFFICIENTS

F. Constant r011 r014 r012

0.5 6.33E-02 -1.16E-10 1.70E-10 -2.50E-10

0.4 5.43E-02 -1.23E-10 1.59E-10 -2.55E-10

0.3 5.38E-02 -2.07E-10 1.75E-10 -2.91E-10

0.2 4.38E-02 -2.71E-10 1.42E-10 -2.02E-10

D.11 ODROID-XU3 Cortex-A15 Multithread Inter-Core Power
Model Coefficients

F. Constant Cores(#) r011 r009 r018 r010 r00A

1.8 6.22E-01 1.24E-01 1.26E-09 -8.41E-05 -3.58E-07 1.46E-09 4.07E-05

1.7 5.50E-01 9.43E-02 1.17E-09 -7.16E-05 -2.86E-07 2.02E-09 3.41E-05

1.6 4.65E-01 8.24E-02 1.09E-09 -7.12E-05 -2.37E-07 3.16E-09 3.45E-05

1.5 4.07E-01 5.28E-02 1.03E-09 -7.18E-05 -2.08E-07 7.13E-10 3.54E-05

1.4 3.54E-01 9.22E-02 9.24E-10 -5.13E-05 -1.87E-07 -9.73E-10 2.34E-05

1.3 3.20E-01 5.92E-02 9.44E-10 -5.52E-05 -1.63E-07 -1.54E-09 2.62E-05

1.2 2.96E-01 5.62E-02 8.74E-10 -3.23E-05 -1.42E-07 -3.78E-09 1.40E-05

1.1 2.52E-01 3.90E-02 8.53E-10 -4.78E-05 -1.32E-07 -2.61E-09 2.29E-05

1 2.30E-01 2.24E-02 8.12E-10 -5.05E-05 -1.09E-07 -6.49E-10 2.45E-05

0.9 2.03E-01 2.77E-02 7.50E-10 -4.17E-05 -9.46E-08 -2.84E-09 1.97E-05

0.8 1.74E-01 1.94E-02 7.13E-10 -2.37E-05 -7.46E-08 -3.52E-09 1.04E-05

0.7 1.48E-01 1.08E-02 7.17E-10 -3.14E-05 -6.38E-08 -3.05E-09 1.48E-05

0.6 1.27E-01 5.94E-03 7.35E-10 -2.69E-05 -5.23E-08 -2.92E-09 1.24E-05

0.5 1.07E-01 5.33E-03 7.44E-10 -3.31E-05 -4.65E-08 -3.78E-09 1.58E-05

0.4 8.31E-02 2.49E-03 7.75E-10 -3.04E-05 -3.44E-08 -4.21E-09 1.44E-05

0.3 6.29E-02 1.15E-03 7.92E-10 -2.41E-05 -2.43E-08 -4.35E-09 1.11E-05

0.2 4.39E-02 3.10E-04 8.12E-10 -1.96E-05 -1.64E-08 -4.64E-09 8.71E-06

D.12 ODROID-XU3 Cortex-A7 Multithread Inter-Core Power
Model Coefficients

F. Constant Cores(#) r011 r009 r00A

1.4 1.17E-01 2.12E-02 1.70E-10 4.10E-06 -3.16E-06

1.3 9.59E-02 1.77E-02 1.61E-10 2.18E-06 -1.96E-06

1.2 7.98E-02 1.73E-02 1.46E-10 -1.32E-06 1.83E-08

1.1 6.73E-02 1.43E-02 1.39E-10 7.18E-07 -9.82E-07

133

APPENDIX D. POWER MODEL COEFFICIENTS

F. Constant Cores(#) r011 r009 r00A

1 5.77E-02 1.22E-02 1.32E-10 4.44E-07 -8.17E-07

0.9 4.74E-02 1.05E-02 1.26E-10 3.94E-07 -7.39E-07

0.8 3.51E-02 7.22E-03 1.22E-10 -1.13E-06 1.62E-07

0.7 2.71E-02 5.32E-03 1.20E-10 -6.75E-07 -1.69E-08

0.6 1.97E-02 4.29E-03 1.17E-10 -5.34E-07 -5.17E-08

0.5 1.48E-02 3.42E-03 1.11E-10 -8.65E-07 1.57E-07

0.4 1.22E-02 2.61E-03 1.15E-10 -1.05E-06 2.92E-07

0.3 9.41E-03 1.72E-03 1.21E-10 -6.99E-07 1.23E-07

0.2 6.48E-03 9.49E-04 1.29E-10 -1.58E-06 6.49E-07

134

A
P

P
E

N
D

I
X

E
MODIFIED PARSEC BLACKSCHOLES FOR HETEROGENEOUS

EXECUTION ON 8 CORES

Figure E.1: PARSEC Blackscholes E/F Curve

135

BIBLIOGRAPHY

[1] N. Heuveldop et al., “Ericsson mobility report,” Ericsson AB, Technol. Emerg. Business,
Stockholm, Sweden, Tech. Rep. EAB-17, vol. 5964, 2017.

[2] S. Borkar and A. A. Chien, “The future of microprocessors,” Communications of the ACM,
vol. 54, no. 5, pp. 0–5, 2011. [Online]. Available: http://search.ebscohost.com/login.
aspx?direct=true{&}db=bth{&}AN=60863975{&}site=ehost-live

[3] J. E. Stone, D. Gohara, and G. Shi, “Opencl: A parallel programming standard for
heterogeneous computing systems,” Computing in science & engineering, vol. 12, no. 3,
pp. 66–73, 2010.

[4] C. Nvidia, “Programming guide,” 2010.

[5] A. Munshi, B. Gaster, T. G. Mattson, and D. Ginsburg, OpenCL programming guide. Pear-
son Education, 2011.

[6] http://www.arm.com/products/processors/technologies/biglittleprocessing.php, [On-
line; accessed 10-Oct-2013].

[7] https://www.arm.com/about/newsroom/arm-unveils-its-most-energy-efficient-application-processor-ever-with-biglittle-processing.
php, [Online; accessed 21-Oct-2014].

[8] https://www.arm.com/files/pdf/big_LITTLE_Technology_the_Futue_of_Mobile.pdf,
[Online; accessed 2-Feb-2014].

[9] R. Kumar, D. Tullsen, P. Ranganathan, N. Jouppi, and K. Farkas, “Single-ISA heteroge-
neous multi-core architectures for multithreaded workload performance,” Proceedings.
31st Annual International Symposium on Computer Architecture, 2004., 2004.

[10] M. D. Hill and M. R. Marty, “Amdahl’s law in the multicore era,” Computer 7, no. April,
pp. 33–38, 2008.

[11] J. L. Gustafson, “Reevaluating amdahl’s law,” Communications of the ACM, vol. 31, no. 5,
pp. 532–533, 1988.

136

http://search.ebscohost.com/login.aspx?direct=true{&}db=bth{&}AN=60863975{&}site=ehost-live
http://search.ebscohost.com/login.aspx?direct=true{&}db=bth{&}AN=60863975{&}site=ehost-live
http://www.arm.com/products/processors/technologies/biglittleprocessing.php
https://www.arm.com/about/newsroom/arm-unveils-its-most-energy-efficient-application-processor-ever-with-biglittle-processing.php
https://www.arm.com/about/newsroom/arm-unveils-its-most-energy-efficient-application-processor-ever-with-biglittle-processing.php
https://www.arm.com/files/pdf/big_LITTLE_Technology_the_Futue_of_Mobile.pdf

BIBLIOGRAPHY

[12] S. Borkar, “Thousand core chips: a technology perspective,” in Proceedings of the 44th
annual Design Automation Conference. ACM, 2007, pp. 746–749.

[13] D. H. Woo and H.-H. S. Lee., “Extending Amdahl’s law for energy-efficient computing
in the many-core era,” Computer 12, pp. 24–31, 2008.

[14] http://www.hardkernel.com/main/products/prdt_info.php?g_code=G137463363079,
[Online; accessed 10-Oct-2013].

[15] https://www.arm.com/files/pdf/Motherboard_Express_uATX.pdf, [Online; accessed
20-Oct-2014].

[16] https://static.docs.arm.com/dui0447/j/DUI0447.pdf, [Online; accessed 15-Feb-2014].

[17] https://static.docs.arm.com/ddi0503/i/DDI0503I_v2p_ca15_a7_tc2_trm.pdf, [Online;
accessed 20-Feb-2014].

[18] http://www.hardkernel.com/main/products/prdt_info.php?g_code=G140448267127,
[Online; accessed 12-March-2015].

[19] http://ctuning.org/wiki/index.php?title=CTools:CBench/, [Online; accessed 19-Oct-
2014].

[20] http://parsec.cs.princeton.edu/index.htm, [Online; accessed 02-May-2017].

[21] K. Nikov, J. L. Nunez-Yanez, and M. Horsnell, “Evaluation of hybrid run-time power
models for the ARM big. Little architecture,” Proceedings - IEEE/IFIP 13th International
Conference on Embedded and Ubiquitous Computing, EUC 2015, pp. 205–210, 2015.

[22] https://www.researchgate.net/publication/319914261_The_energy_consumption_
benefits_of_DynamIQ_for_heterogeneous_parallel_workloads, [Online; accessed
19-Sep-2017].

[23] L. Benini, A. Bogliolo, and G. De Micheli, “A survey of design techniques for system-
level dynamic power management,” IEEE transactions on very large scale integration
(VLSI) systems, vol. 8, no. 3, pp. 299–316, 2000.

[24] http://www.acpi.info/, [Online; accessed 19-Sep-2014].

[25] http://www.uefi.org/sites/default/files/resources/ACPI%206_2_A_Sept29.pdf, [On-
line; accessed 10-Feb-2018].

[26] M. Pedram, “Power optimization and management in embedded systems,” in Proceedings
of the 2001 Asia and South Pacific Design Automation Conference. ACM, 2001, pp. 239–
244.

137

http://www.hardkernel.com/main/products/prdt_info.php?g_code=G137463363079
https://www.arm.com/files/pdf/Motherboard_Express_uATX.pdf
https://static.docs.arm.com/dui0447/j/DUI0447.pdf
https://static.docs.arm.com/ddi0503/i/DDI0503I_v2p_ca15_a7_tc2_trm.pdf
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G140448267127
http://ctuning.org/wiki/index.php?title=CTools:CBench/
http://parsec.cs.princeton.edu/index.htm
https://www.researchgate.net/publication/319914261_The_energy_consumption_benefits_of_DynamIQ_for_heterogeneous_parallel_workloads
https://www.researchgate.net/publication/319914261_The_energy_consumption_benefits_of_DynamIQ_for_heterogeneous_parallel_workloads
http://www.acpi.info/
http://www.uefi.org/sites/default/files/resources/ACPI%206_2_A_Sept29.pdf

BIBLIOGRAPHY

[27] http://chipdesignmag.com/sld/blog/2014/03/12/system-level-power-budgeting/,
[Online; accessed 10-Aug-2014].

[28] https://www.apache-da.com/company/events/ATF2011, [Online; accessed 10-Aug-
2014].

[29] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger, “Dark silicon
and the end of multicore scaling,” IEEE Micro, vol. 32, pp. 122–134, 2012.

[30] M. Shafique, S. Garg, T. Mitra, S. Parameswaran, and J. Henkel, “Dark silicon as a
challenge for hardware/software co-design,” Proceedings of the 2014 International
Conference on Hardware/Software Codesign and System Synthesis - CODES ’14, pp. 1–10,
2014. [Online]. Available: http://dl.acm.org/citation.cfm?doid=2656075.2661645

[31] K. De Vogeleer, G. Memmi, P. Jouvelot, and F. Coelho., “The en-
ergy/frequency convexity rule: Modeling and experimental validation on
mobile devices.” Parallel Processing and . . . , pp. 793–803, 2014. [Online].
Available: isi:000180067200055{%}5Cnhttp://link.springer.com/chapter/10.1007/
3-540-48086-2{_}55{%}5Cnhttp://link.springer.com/10.1007/3-540-48086-2

[32] K. Rangan, G. Wei, and D. Brooks, “Thread motion: fine-grained power management for
multi-core systems,” ACM SIGARCH Computer Architecture . . . , pp. 302–313, 2009.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1555793

[33] K. Choi, R. Soma, and M. Pedram, “Fine-grained dynamic voltage and frequency scaling
for precise energy and performance tradeoff based on the ratio of off-chip access to
on-chip computation times,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 24, no. 1, pp. 18–28, 2005.

[34] D. Shelepov and J. S. Alcaide, “HASS: a scheduler for heterogeneous multicore
systems,” . . . Operating Systems . . . , pp. 66–75, 2009. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1531804

[35] J. Henning, “SPEC CPU2000: measuring CPU performance in the New Millennium,”
Computer (Long. Beach. Calif)., vol. 33, no. 7, pp. 28–35, 2000. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=869367

[36] M. Curtis-maury, A. Shah, F. Blagojevic, D. S. Nikolopoulos, B. R. D. Supinski, and
M. Schulz, “Prediction Models for Multi-dimensional Power-Performance Optimiza-
tion on Many Cores Categories and Subject Descriptors,” pp. 250–259.

[37] L. Dagum and R. Menon, “Openmp: an industry standard api for shared-memory
programming,” IEEE computational science and engineering, vol. 5, no. 1, pp. 46–55,
1998.

138

http://chipdesignmag.com/sld/blog/2014/03/12/system-level-power-budgeting/
https://www.apache-da.com/company/events/ATF2011
http://dl.acm.org/citation.cfm?doid=2656075.2661645
isi:000180067200055{%}5Cnhttp://link.springer.com/chapter/10.1007/3-540-48086-2{_}55{%}5Cnhttp://link.springer.com/10.1007/3-540-48086-2
isi:000180067200055{%}5Cnhttp://link.springer.com/chapter/10.1007/3-540-48086-2{_}55{%}5Cnhttp://link.springer.com/10.1007/3-540-48086-2
http://dl.acm.org/citation.cfm?id=1555793
http://dl.acm.org/citation.cfm?id=1531804
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=869367

BIBLIOGRAPHY

[38] D. H. Bailey, R. S. Schreiber, H. D. Simon, V. Venkatakrishnan, S. K. Weeratunga,
E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, L. Dagum, R. a.
Fatoohi, P. O. Frederickson, and T. a. Lasinski, “The NAS parallel benchmarks—
summary and preliminary results,” Proceedings of the 1991 ACM/IEEE conference
on Supercomputing - Supercomputing ’91, pp. 158–165, 1991. [Online]. Available:
http://ieeexplore.ieee.org/xpl/freeabs{_}all.jsp?arnumber=5348941

[39] C. Imes and H. Hoffmann, “Minimizing energy under performance constraints on
embedded platforms: resource allocation heuristics for homogeneous and single-ISA
heterogeneous multi-cores,” ACM SIGBED Review, vol. 11, no. 4, pp. 49–54, 2015.

[40] C. Bienia and K. Li, “Parsec 2.0: A new benchmark suite for chip-multiprocessors,”
5th Annual Workshop on Modeling, Benchmarking and Simulation, pp. 1–9,
2009. [Online]. Available: http://www-mount.ece.umn.edu/{~}jjyi/MoBS/2009/
program/02E-Bienia.pdf

[41] K. V. Craeynest, “Scheduling Heterogeneous Multi-Cores through Performance Impact
Estimation (PIE) type I type II type III,” vol. 00, no. c, pp. 213–224, 2012.

[42] J. L. Henning, “SPEC CPU2006 benchmark descriptions.” ACM SIGARCH Computer
Architecture News, vol. 34, no. 4, pp. 1–17, 2006. [Online]. Available: http:
//scholar.google.com/scholar?hl=en{&}btnG=Search{&}q=intitle:No+Title{#}0

[43] W.-T. Hsieh, C.-C. Shiue, and C.-N. Liu, “Efficient power modelling approach
of sequential circuits using recurrent neural networks,” IEE Proceedings -
Computers and Digital Techniques, vol. 153, no. 2, p. 78, 2006. [Online]. Available:
http://digital-library.theiet.org/content/journals/10.1049/ip-cdt{_}20045147

[44] I. Takouna, W. Dawoud, and C. Meinel, “Accurate Mutlicore Processor Power
Models for Power-Aware Resource Management,” 2011 IEEE Ninth International
Conference on Dependable, Autonomic and Secure Computing, pp. 419–426, dec
2011. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=6118753

[45] T. Sherwood, E. Perelman, G. Hamerly, S. Sair, and B. Calder, “Discovering and Exploiting
Program Phases,” IEEE Micro, vol. 23, pp. 84–93, 2003.

[46] C. Isci and M. Martonpsi, “Phase characterization for power: Evaluating control-flow-
based and event-counter-based techniques,” Proceedings - International Symposium on
High-Performance Computer Architecture, vol. 2006, pp. 122–133, 2006.

[47] R. Bertran, M. Gonzalez, X. Martorell, N. Navarro, and E. Ayguade, “Decomposable and
Responsive Power Models for Multicore Processors using Performance Counters Cat-

139

http://ieeexplore.ieee.org/xpl/freeabs{_}all.jsp?arnumber=5348941
http://www-mount.ece.umn.edu/{~}jjyi/MoBS/2009/program/02E-Bienia.pdf
http://www-mount.ece.umn.edu/{~}jjyi/MoBS/2009/program/02E-Bienia.pdf
http://scholar.google.com/scholar?hl=en{&}btnG=Search{&}q=intitle:No+Title{#}0
http://scholar.google.com/scholar?hl=en{&}btnG=Search{&}q=intitle:No+Title{#}0
http://digital-library.theiet.org/content/journals/10.1049/ip-cdt{_}20045147
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6118753
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6118753

BIBLIOGRAPHY

egories and Subject Descriptors,” Proceedings of the 24th ACM International Conference
on Supercomputing, pp. 147–158, 2010.

[48] M. J. Pazzani and S. D. Bay, “The Independent Sign Bias : Gaining Insight from Multiple
Linear Regression,” 1981.

[49] J. Nunez-Yanez and G. Lore, “Enabling accurate modeling of power and
energy consumption in an ARM-based System-on-Chip,” Microprocessors and
Microsystems, vol. 37, no. 3, pp. 319–332, may 2013. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S0141933113000021

[50] M. Pricopi, T. S. Muthukaruppan, V. Venkataramani, T. Mitra, and S. Vishin,
“Power-performance modeling on asymmetric multi-cores,” 2013 International
Conference on Compilers, Architecture and Synthesis for Embedded Systems (CASES),
pp. 1–10, sep 2013. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=6662519

[51] K. Singh, M. Bhadauria, and S. a. McKee, “Real time power estimation and thread
scheduling via performance counters,” ACM SIGARCH Computer Architecture News,
vol. 37, no. 2, p. 46, 2009.

[52] R. Rodrigues, A. Annamalai, I. Koren, and S. Kundu, “A study on the use of performance
counters to estimate power in microprocessors,” IEEE Transactions on Circuits and
Systems II: Express Briefs, vol. 60, no. 12, pp. 882–886, 2013.

[53] M. Guthaus and J. Ringenberg, “MiBench: A free, commercially representative
embedded benchmark suite,” . . . , 2001. WWC-4. . . . , pp. 3–14, 2001. [Online].
Available: http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=990739

[54] C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “Mediabench: a tool for evaluating
and synthesizing multimedia and communicatons systems,” in Proceedings of the
30th annual ACM/IEEE international symposium on Microarchitecture. IEEE Computer
Society, 1997, pp. 330–335.

[55] H. Blume, D. Becker, L. Rotenberg, M. Botteck, J. Brakensiek, and T. Noll, “Hybrid
functional- and instruction-level power modeling for embedded and heterogeneous
processor architectures,” Journal of Systems Architecture, vol. 53, no. 10, pp.
689–702, oct 2007. [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/
S1383762107000161

[56] S. K. Rethinagiri, O. Palomar, R. Ben Atitallah, S. Niar, O. Unsal, and A. C.
Kestelman, “System-level power estimation tool for embedded processor based
platforms,” Proceedings of the 6th Workshop on Rapid Simulation and Performance

140

http://linkinghub.elsevier.com/retrieve/pii/S0141933113000021
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6662519
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6662519
http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=990739
http://linkinghub.elsevier.com/retrieve/pii/S1383762107000161
http://linkinghub.elsevier.com/retrieve/pii/S1383762107000161

BIBLIOGRAPHY

Evaluation Methods and Tools - RAPIDO ’14, pp. 1–8, 2014. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2555486.2555491

[57] C. Dismuke and R. Lindrooth, “Ordinary least squares,” Methods and Designs for Outcomes
Research, vol. 93, pp. 93–104, 2006.

[58] S. Eyerman, K. Hoste, and L. Eeckhout, “Mechanistic-empirical processor performance
modeling for constructing CPI stacks on real hardware,” (Ieee Ispass) Ieee International
Symposium on Performance Analysis of Systems and Software, pp. 216–226, apr
2011. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=5762738

[59] H. Jacobson and A. Buyuktosunoglu, “Abstraction and microarchitecture scaling in
early-stage power modeling,” . . . (HPCA), 2011 IEEE . . . , pp. 394–405, 2011. [Online].
Available: http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=5749746

[60] Y. Zhang, X. Wang, X. Liu, Y. Liu, Ł. Zhuang, and F. Zhao, “Towards better CPU
power management on multicore smartphones,” Proceedings of the Workshop on
Power-Aware Computing and Systems - HotPower ’13, pp. 1–5, 2013. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2525526.2525849

[61] M. J. Walker, S. Diestelhorst, A. Hansson, A. K. Das, S. Yang, B. M. Al-hashimi, and G. V.
Merrett, “Accurate and Stable Run-Time Power Modeling for Mobile and Embedded
CPUs,” Ieee Transactions on Computer Aided Design of Integrated Circuits and Systems,
pp. 1–14, 2015.

[62] ——, “Accurate and Stable Run-Time Power Modeling for Mobile and Embedded CPUs,”
Ieee Transactions on Computer Aided Design of Integrated Circuits and Systems, vol. 36,
no. 1, pp. 1–14, 2017.

[63] M. Kim, H. Kim, H. Chung, and K. Lim, “Samsung exynos 5410 processor-experience
the ultimate performance and versatility,” White Paper, 2013.

[64] P. Greenhalgh, “Big. little processing with arm cortex-a15 & cortex-a7,” ARM White paper,
vol. 17, 2011.

[65] B. Jeff, “Advances in big. little technology for power and energy savings,” ARM White
paper, p. 33, 2012.

[66] https://developer.arm.com/products/system-ip/corelink-interconnect/
corelink-cache-coherent-interconnect-family", note =.

[67] https://developer.arm.com/docs/ddi0470/latest/preface, [Online; accessed 13-Jun-
2016].

141

http://dl.acm.org/citation.cfm?doid=2555486.2555491
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5762738
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5762738
http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=5749746
http://dl.acm.org/citation.cfm?doid=2525526.2525849
https://developer.arm.com/products/system-ip/corelink-interconnect/corelink-cache-coherent-interconnect-family"
https://developer.arm.com/products/system-ip/corelink-interconnect/corelink-cache-coherent-interconnect-family"
https://developer.arm.com/docs/ddi0470/latest/preface

BIBLIOGRAPHY

[68] https://developer.arm.com/products/architecture/amba-protocol/amba-4", note =.

[69] H.-D. Cho, P. D. P. Engineer, K. Chung, and T. Kim, “Benefits of the big. little architecture,”
EETimes, Feb, 2012.

[70] H. Chung, M. Kang, and H.-D. Cho, “Heterogeneous multi-processing solution of exynos
5 octa with arm® big. little™ technology,” Samsung White Paper, 2012.

[71] K. Krewell, “Cortex-a53 is arm’s next little thing,” Microprocessor Report, vol. 11, no. 5,
pp. 12–2, 2012.

[72] J. Bolaria, “Cortex-a57 extends arm’s reach,” Microprocessor Report, vol. 11, no. 5, pp. 12–1,
2012.

[73] https://www.arm.com/files/pdf/ARM_Qualcomm_White_paper_Final.pdf, [Online;
accessed 1-Jul-2015].

[74] http://www.arm.com/products/processors/cortex-a/cortex-a15.php, [Online; ac-
cessed 10-Oct-2013].

[75] http://infocenter.arm.com/help/topic/com.arm.doc.ddi0438c/DDI0438C_cortex_
a15_r2p0_trm.pdf, [Online; accessed 10-Dec-2013].

[76] T. Lanier, “Exploring the design of the cortex-a15 processor,” URL: http://www. arm.
com/files/pdf/atexploring the design of the cortex-a15. pdf (visited on 12/11/2013), 2011.

[77] http://www.arm.com/products/processors/cortex-a/cortex-a7.php, [Online; accessed
10-Oct-2013].

[78] http://infocenter.arm.com/help/topic/com.arm.doc.ddi0464d/DDI0464D_cortex_
a7_mpcore_r0p3_trm.pdf, [Online; accessed 10-Dec-2013].

[79] https://perf.wiki.kernel.org/index.php/Main_Page", note =.

[80] R. Randhawa, “Software Techniques for ARM big.LITTLE Systems,”
p. 9, 2013. [Online]. Available: http://www.arm.com/files/downloads/
Software{_}Techniques{_}for{_}ARM{_}big.LITTLE{_}Systems.pdf

[81] M. Poirier, “In kernel switcher: A solution to support arm’s new big. little technology,”
in Embedded Linux Conference, 2013.

[82] B. Jeff, “big. little technology moves towards fully heterogeneous global task scheduling,”
White Paper., 2013.

[83] https://www.arm.com/files/pdf/Heterogeneous_Multi_Processing_Solution_of_
Exynos_5_Octa_with_ARM_bigLITTLE_Technology.pdf", note =.

142

https://developer.arm.com/products/architecture/amba-protocol/amba-4"
https://www.arm.com/files/pdf/ARM_Qualcomm_White_paper_Final.pdf
http://www.arm.com/products/processors/cortex-a/cortex-a15.php
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0438c/DDI0438C_cortex_a15_r2p0_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0438c/DDI0438C_cortex_a15_r2p0_trm.pdf
http://www.arm.com/products/processors/cortex-a/cortex-a7.php
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0464d/DDI0464D_cortex_a7_mpcore_r0p3_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0464d/DDI0464D_cortex_a7_mpcore_r0p3_trm.pdf
https://perf.wiki.kernel.org/index.php/Main_Page"
http://www.arm.com/files/downloads/Software{_}Techniques{_}for{_}ARM{_}big.LITTLE{_}Systems.pdf
http://www.arm.com/files/downloads/Software{_}Techniques{_}for{_}ARM{_}big.LITTLE{_}Systems.pdf
https://www.arm.com/files/pdf/Heterogeneous_Multi_Processing_Solution_of_Exynos_5_Octa_with_ARM_bigLITTLE_Technology.pdf"
https://www.arm.com/files/pdf/Heterogeneous_Multi_Processing_Solution_of_Exynos_5_Octa_with_ARM_bigLITTLE_Technology.pdf"

BIBLIOGRAPHY

[84] http://www.ti.com/product/ina231, [Online; accessed 14-Sep-2014].

[85] P. Greenhalgh, “big . LITTLE Processing with,” no. September 2011, pp. 1–8, 2012.

[86] http://web.eece.maine.edu/~vweaver/projects/perf_events/, [Online; accessed 13-
Nov-2013].

[87] https://community.arm.com/processors/b/blog/posts/
cortex-a15-and-cortex-a7-big-little-hardware-from-arm, [Online; accessed 09-
Feb-2018].

[88] https://snapshots.linaro.org/ubuntu/pre-built/lsk-vexpress/, [Online; accessed 1-Mar-
2014].

[89] Y. Shin, K. Shin, P. Kenkare, R. Kashyap, H. J. Lee, D. Seo, B. Millar, Y. Kwon, R. Iyengar,
M. S. Kim, A. Chowdhury, S. I. Bae, I. Hong, W. Jeong, A. Lindner, U. Cho, K. Hawkins,
J. C. Son, and S. H. Hwang, “28nm high-κ metal-gate heterogeneous quad-core CPUs
for high-performance and energy-efficient mobile application processor,” Digest of
Technical Papers - IEEE International Solid-State Circuits Conference, vol. 56, pp. 154–155,
2013.

[90] http://cloc.sourceforge.net/, [Online; accessed 10-Feb-2018].

[91] http://manpages.ubuntu.com/manpages/precise/man1/cset.1.html, [Online; accessed
19-Jul-2015].

[92] https://linux.die.net/man/1/cpufreq-info, [Online; accessed 10-Feb-2018].

[93] https://linux.die.net/man/1/cpufreq-set, [Online; accessed 10-Feb-2018].

[94] C. Bienia, “BENCHMARKING MODERN MULTIPROCESSORS,” 2011. [Online].
Available: http://parsec.cs.princeton.edu/publications/bienia11benchmarking.pdf

[95] https://github.com/kranik/DATACOLLECT/tree/master/ARMPM_datacollect/
ODROID_XU3", note =.

[96] http://www.netlib.org/benchmark/dhry-c, [Online; accessed 20-Oct-2013].

[97] http://www.netlib.org/benchmark/whetstonec, [Online; accessed 20-Oct-2013].

[98] http://www.netlib.org/linpack/, [Online; accessed 20-Oct-2013].

[99] J. Clemons, H. Zhu, S. Savarese, T. Austin, and A. Arbor, “MEVBench : A Mobile
Computer Vision Benchmarking Suite,” pp. 91–102, 2011.

143

http://www.ti.com/product/ina231
http://web.eece.maine.edu/~vweaver/projects/perf_events/
https://community.arm.com/processors/b/blog/posts/cortex-a15-and-cortex-a7-big-little-hardware-from-arm
https://community.arm.com/processors/b/blog/posts/cortex-a15-and-cortex-a7-big-little-hardware-from-arm
https://snapshots.linaro.org/ubuntu/pre-built/lsk-vexpress/
http://cloc.sourceforge.net/
http://manpages.ubuntu.com/manpages/precise/man1/cset.1.html
https://linux.die.net/man/1/cpufreq-info
https://linux.die.net/man/1/cpufreq-set
http://parsec.cs.princeton.edu/publications/bienia11benchmarking.pdf
https://github.com/kranik/DATACOLLECT/tree/master/ARMPM_datacollect/ODROID_XU3"
https://github.com/kranik/DATACOLLECT/tree/master/ARMPM_datacollect/ODROID_XU3"
http://www.netlib.org/benchmark/dhry-c
http://www.netlib.org/benchmark/whetstonec
http://www.netlib.org/linpack/

BIBLIOGRAPHY

[100] J. Stratton and C. Rodrigues, “Parboil: A revised benchmark suite for scientific
and commercial throughput computing,” . . . Computing, 2012. [Online]. Available:
http://impact.crhc.illinois.edu/shared/docs/impact-12-01.parboil.pdf

[101] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and K. Skadron, “Rodinia:
A benchmark suite for heterogeneous computing,” 2009 IEEE International Symposium
on Workload Characterization (IISWC), pp. 44–54, oct 2009. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5306797

[102] http://www.phoronix-test-suite.com/, [Online; accessed 20-Oct-2013].

[103] https://github.com/kranik/BUILDMODEL/tree/master/ARMPM_buildmodel", note
=.

[104] D. A. Belsley, E. Kuh, and R. E. Welsch, Regression diagnostics: Identifying influential data
and sources of collinearity. John Wiley & Sons, 2005, vol. 571.

[105] M. H. Kutner, C. Nachtsheim, and J. Neter, Applied linear regression models. McGraw-
Hill/Irwin, 2004.

[106] W. C. Black, B. J. Babin, R. E. Anderson et al., Multivariate data analysis, vol. 5, no. 3.

[107] H. Kim, N. Agrawal, and C. Ungureanu, “Revisiting storage for smartphones,” ACM
Transactions on Storage (TOS), vol. 8, no. 4, p. 14, 2012.

[108] https://wiki.linaro.org/Flash%20memory, [Online; accessed 16-Mar-2017].

[109] https://wiki.linaro.org/WorkingGroups/KernelArchived/Projects/FlashCardSurvey,
[Online; accessed 17-Sep-2015].

[110] https://wiki.linaro.org/WorkingGroups/KernelArchived/Specs/StoragePerfEMMC?
highlight=, [Online; accessed 14-Jul-2015].

[111] https://wiki.linaro.org/WorkingGroups/KernelArchived/Specs/
StoragePerfMMC-FS-compare, [Online; accessed 14-Mar-2016].

144

http://impact.crhc.illinois.edu/shared/docs/impact-12-01.parboil.pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5306797
http://www.phoronix-test-suite.com/
https://github.com/kranik/BUILDMODEL/tree/master/ARMPM_buildmodel"
https://wiki.linaro.org/Flash%20memory
https://wiki.linaro.org/WorkingGroups/KernelArchived/Projects/FlashCardSurvey
https://wiki.linaro.org/WorkingGroups/KernelArchived/Specs/StoragePerfEMMC?highlight=
https://wiki.linaro.org/WorkingGroups/KernelArchived/Specs/StoragePerfEMMC?highlight=
https://wiki.linaro.org/WorkingGroups/KernelArchived/Specs/StoragePerfMMC-FS-compare
https://wiki.linaro.org/WorkingGroups/KernelArchived/Specs/StoragePerfMMC-FS-compare

	List of Tables
	List of Figures
	List of Acronyms
	List of Publications
	Introduction
	Heterogeneous Computing in Embedded Systems
	The ARM big.LITTLE SoC
	Scope of this Thesis
	Thesis Structure

	Background
	Energy Management
	Power Modelling
	big.LITTLE in Detail
	ARM Cortex-A15 CPU
	ARM Cortex-A7 CPU
	The Performance Monitoring Unit (PMU)
	Existing Energy Management Solutions for the big.LITTLE Platform

	Summary

	Development Platforms
	ODROID XU+E
	ARM Versatile Express Motherboard with CoreTile Express TC2 Daughterboard
	ODROID XU3
	Summary

	Methodology
	Data Collection
	Experimental Setup
	Workload Characteristics
	Workload Execution

	Data Processing
	Data Synchronization
	Data Concatenation and Analysis

	Model Generation
	Offline Analysis Using octave
	Event Selection
	Model Accuracy Metrics
	Model Validation and Comparison

	Summary

	Single-thread Models
	Initial Results
	ODROID XU+E Power Models
	ARM Versatile Express Motherboard with CoreTile TC2 Daughterboard
	Platform Comparison between ARM Versatile Express Motherboard with CoreTile TC2 Daughterboard and ODROID XU+E

	Extending the model for the ODROID-XU3 platform
	Full frequency range models
	Per-frequency models

	Comparison to related work
	Evaluating model reproducibility
	Methodology refinement using automatic search
	Analysing model performance between the mSD and eMMC memory cards
	Investigating mSD card stability
	Investigating eMMC card stability
	Addressing the temperature variability

	Further development - complete exploration of the PMU event set
	Model validation and application
	Summary of results

	Multi-thread Models
	Initial results
	Extended methodology
	Comparison to related work
	Summary of results

	Heterogeneous Models
	Model purpose and significance
	Single-thread case
	Multi-thread case
	Collaboration
	Summary of Results

	Conclusions
	Summary of research objectives
	Key contributions
	Future work
	Final remarks

	Available PMU Events for the big.LITTLE System
	Power Modelling Workloads Train Test Set Splits
	cBench Initial Partial Uneven Workset Split
	cBench Workset Split
	PARSEC Workset Split

	Pseudocode Samples
	Experiment Data Concatenation
	Per-Frequency Model Generation
	Bottom-Up Automatic Event Selection
	Top-Down Automatic Event Selection
	Exhaustive Automatic Event Selection
	Inter-Core Model Generation

	Power Model Coefficients
	ODROID XU+E Cortex-A15 Power Model Coefficients
	ODROID XU+E Cortex-A7 Power Model Coefficients
	Versatile Express with TC2 Cortex-A15 Power Model Coefficients
	Versatile Express with TC2 Cortex-A7 Power Model Coefficients
	ODROID-XU3 Cortex-A15 Single-Thread Power Model Coefficients
	ODROID-XU3 Cortex-A7 Single-Thread Power Model Coefficients
	ODROID-XU3 Cortex-A15 Multithread Power Model Coefficients
	ODROID-XU3 Cortex-A7 Multithread Power Model Coefficients
	ODROID-XU3 Cortex-A15 Single-Thread Inter-Core Power Model Coefficients
	ODROID-XU3 Cortex-A7 Single-Thread Inter-Core Power Model Coefficients
	ODROID-XU3 Cortex-A15 Multithread Inter-Core Power Model Coefficients
	ODROID-XU3 Cortex-A7 Multithread Inter-Core Power Model Coefficients

	Modified PARSEC Blackscholes for Heterogeneous Execution on 8 cores
	Bibliography

